| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586 |
- <?xml version="1.0"?>
- <!----------------------------------------------------------------------------
- 22x5 Eye pair detector computed with 7000 positive samples
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2006, Modesto Castrillon-Santana (IUSIANI, University of
- | Las Palmas de Gran Canaria, Spain).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
- RESEARCH USE:
- If you are using any of the detectors or involved ideas please cite one of these papers:
- @ARTICLE{Castrillon07-jvci,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.",
- title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams",
- journal = "Journal of Visual Communication and Image Representation",
- year = "2007",
- vol = "18",
- issue = "2",
- month = "April",
- pages = "130-140"
- }
- @INPROCEEDINGS{Castrillon07-swb,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ",
- title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically",
- booktitle = "1st Spanish Workshop on Biometrics",
- year = "2007",
- month = "June",
- address = "Girona, Spain",
- file = F
- }
- A comparison of this and other face related classifiers can be found in:
- @InProceedings{Castrillon08a-visapp,
- 'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro",
- title = "Face and Facial Feature Detection Evaluation"
- booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08"
- year = "2008",
- month = "January"
- }
- More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers.
- COMMERCIAL USE:
- If you have any commercial interest in this work please contact
- mcastrillon@iusiani.ulpgc.es
- ------------------------------------------------------------------------>
- <opencv_storage>
- <parojos type_id="opencv-haar-classifier">
- <size>
- 22 5</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 15 2 -1.</_>
- <_>
- 8 1 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2526662945747376</threshold>
- <left_val>-0.7711064219474793</left_val>
- <right_val>0.8083379864692688</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 5 2 -1.</_>
- <_>
- 17 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6097120977938175e-003</threshold>
- <left_val>-0.7382487058639526</left_val>
- <right_val>0.3885168135166168</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 5 -1.</_>
- <_>
- 10 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1529859006404877</threshold>
- <left_val>-0.5524439215660095</left_val>
- <right_val>0.6428967118263245</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 3 -1.</_>
- <_>
- 17 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415615215897560</threshold>
- <left_val>0.4628770947456360</left_val>
- <right_val>-0.5341588854789734</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 20 2 -1.</_>
- <_>
- 1 2 10 1 2.</_>
- <_>
- 11 3 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4064395129680634</threshold>
- <left_val>0.0170928593724966</left_val>
- <right_val>-4.6732509765625000e+003</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 5 2 -1.</_>
- <_>
- 16 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296334698796272</threshold>
- <left_val>-0.4434844851493835</left_val>
- <right_val>0.5070301294326782</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 1 2 -1.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0285720054525882e-004</threshold>
- <left_val>-0.6646639108657837</left_val>
- <right_val>0.3020784854888916</right_val></_></_></trees>
- <stage_threshold>-1.7232350111007690</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 15 2 -1.</_>
- <_>
- 8 1 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3342517912387848</threshold>
- <left_val>-0.6565846204757690</left_val>
- <right_val>0.7222465276718140</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 5 2 -1.</_>
- <_>
- 16 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0346819795668125</threshold>
- <left_val>-0.6552636027336121</left_val>
- <right_val>0.5463399887084961</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0534898117184639</threshold>
- <left_val>0.4989432096481323</left_val>
- <right_val>-0.5077415108680725</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1027211993932724</threshold>
- <left_val>-0.2844530940055847</left_val>
- <right_val>0.4049448966979981</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 2 -1.</_>
- <_>
- 0 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4077969535719603e-004</threshold>
- <left_val>-0.7902024984359741</left_val>
- <right_val>0.3444094955921173</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2322703003883362</threshold>
- <left_val>-0.1301804929971695</left_val>
- <right_val>0.4313975870609283</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0804133936762810</threshold>
- <left_val>-0.4637677967548370</left_val>
- <right_val>0.4882495105266571</right_val></_></_></trees>
- <stage_threshold>-1.4015640020370483</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 3 -1.</_>
- <_>
- 9 0 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3527685105800629</threshold>
- <left_val>-0.6308009028434753</left_val>
- <right_val>0.6519911885261536</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 4 -1.</_>
- <_>
- 16 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0732240602374077</threshold>
- <left_val>-0.5955833792686462</left_val>
- <right_val>0.4883106946945190</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 4 1 -1.</_>
- <_>
- 4 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0226341206580400</threshold>
- <left_val>0.4198729097843170</left_val>
- <right_val>-0.5654544234275818</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 5 -1.</_>
- <_>
- 10 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2229817062616348</threshold>
- <left_val>-0.3186086118221283</left_val>
- <right_val>0.4877224862575531</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 5 2 -1.</_>
- <_>
- 0 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183574296534061</threshold>
- <left_val>-0.4086276888847351</left_val>
- <right_val>0.3995149135589600</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 1 2 -1.</_>
- <_>
- 20 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2711199815385044e-004</threshold>
- <left_val>-0.4723080098628998</left_val>
- <right_val>0.2052184939384460</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108341602608562</threshold>
- <left_val>0.1331830024719238</left_val>
- <right_val>-0.7791494727134705</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 5 2 -1.</_>
- <_>
- 17 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9301595687866211e-003</threshold>
- <left_val>-0.5978981256484985</left_val>
- <right_val>0.0493724681437016</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 12 1 -1.</_>
- <_>
- 8 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2945961058139801</threshold>
- <left_val>-9.9943317472934723e-003</left_val>
- <right_val>-3.9346069335937500e+003</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 1 2 -1.</_>
- <_>
- 20 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239798706024885</threshold>
- <left_val>0.0653594881296158</left_val>
- <right_val>-0.5048499107360840</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 1 2 -1.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0285720054525882e-004</threshold>
- <left_val>-0.6223191022872925</left_val>
- <right_val>0.1374989002943039</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 16 2 -1.</_>
- <_>
- 8 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1328265964984894</threshold>
- <left_val>-0.3416162133216858</left_val>
- <right_val>0.2717226147651672</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 8 2 -1.</_>
- <_>
- 7 3 4 1 2.</_>
- <_>
- 11 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0373767800629139</threshold>
- <left_val>-0.7467133998870850</left_val>
- <right_val>0.1147433966398239</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3414398357272148e-003</threshold>
- <left_val>-0.3496235907077789</left_val>
- <right_val>0.1292906999588013</right_val></_></_></trees>
- <stage_threshold>-1.9015949964523315</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 15 2 -1.</_>
- <_>
- 8 1 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3591364920139313</threshold>
- <left_val>-0.5852038860321045</left_val>
- <right_val>0.5831562876701355</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 1 2 -1.</_>
- <_>
- 17 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.2016262933611870e-003</threshold>
- <left_val>0.2337868064641953</left_val>
- <right_val>-0.5213131904602051</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 2 1 -1.</_>
- <_>
- 5 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0154673596844077</threshold>
- <left_val>0.3357514142990112</left_val>
- <right_val>-0.5408478975296021</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 5 -1.</_>
- <_>
- 10 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1552383005619049</threshold>
- <left_val>-0.4648830890655518</left_val>
- <right_val>0.4395757913589478</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 1 2 -1.</_>
- <_>
- 5 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0103788999840617</threshold>
- <left_val>0.2285542041063309</left_val>
- <right_val>-0.4747259914875031</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 2 2 -1.</_>
- <_>
- 20 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5254109688103199e-003</threshold>
- <left_val>0.3016864955425263</left_val>
- <right_val>-0.2849124968051910</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 1 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2629480625037104e-004</threshold>
- <left_val>0.2231729030609131</left_val>
- <right_val>-0.3981136083602905</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 12 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2507449719123542e-004</threshold>
- <left_val>-0.3672328889369965</left_val>
- <right_val>0.1385204941034317</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0782120823860168e-003</threshold>
- <left_val>-0.6827750802040100</left_val>
- <right_val>0.1098302975296974</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 11 2 5 1 2.</_>
- <_>
- 6 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0498007684946060</threshold>
- <left_val>-0.7118374705314636</left_val>
- <right_val>0.0958777666091919</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 1 2 -1.</_>
- <_>
- 4 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1072968021035194</threshold>
- <left_val>-0.0198284294456244</left_val>
- <right_val>-2.6988120117187500e+003</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 20 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9545628931373358e-003</threshold>
- <left_val>-0.5966340899467468</left_val>
- <right_val>0.1437848955392838</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2507449719123542e-004</threshold>
- <left_val>-0.4219875931739807</left_val>
- <right_val>0.1265437006950378</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 20 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0507127307355404</threshold>
- <left_val>0.0368256606161594</left_val>
- <right_val>-0.7281960844993591</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4936710067559034e-004</threshold>
- <left_val>-0.5385984778404236</left_val>
- <right_val>0.1298418939113617</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 20 4 -1.</_>
- <_>
- 12 1 10 2 2.</_>
- <_>
- 2 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2437365055084229</threshold>
- <left_val>0.0569615103304386</left_val>
- <right_val>-0.7102329134941101</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 5 4 -1.</_>
- <_>
- 1 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0600150190293789</threshold>
- <left_val>0.2469456046819687</left_val>
- <right_val>-0.2502039074897766</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 12 1 -1.</_>
- <_>
- 10 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0874126628041267</threshold>
- <left_val>0.0585523098707199</left_val>
- <right_val>-0.2872526943683624</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 12 1 -1.</_>
- <_>
- 6 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0909190475940704</threshold>
- <left_val>-0.6881564855575562</left_val>
- <right_val>0.0880744829773903</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 6 3 -1.</_>
- <_>
- 12 2 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1481955051422119</threshold>
- <left_val>-0.0833467096090317</left_val>
- <right_val>0.5128626227378845</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 3 -1.</_>
- <_>
- 10 2 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2177619934082031</threshold>
- <left_val>-0.1130203977227211</left_val>
- <right_val>0.4898183941841126</right_val></_></_></trees>
- <stage_threshold>-1.8471280336380005</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 16 2 -1.</_>
- <_>
- 6 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2408764064311981</threshold>
- <left_val>-0.5451133251190186</left_val>
- <right_val>0.4999712109565735</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 5 4 -1.</_>
- <_>
- 13 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0914550274610519</threshold>
- <left_val>-0.5453007221221924</left_val>
- <right_val>0.3651191890239716</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 3 -1.</_>
- <_>
- 9 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0629608929157257</threshold>
- <left_val>-0.4504084885120392</left_val>
- <right_val>0.3127841949462891</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 3 -1.</_>
- <_>
- 17 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0448659397661686</threshold>
- <left_val>0.3819159865379334</left_val>
- <right_val>-0.4031482040882111</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 1 2 -1.</_>
- <_>
- 5 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0137748196721077</threshold>
- <left_val>0.2556776106357575</left_val>
- <right_val>-0.5279502272605896</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 3 -1.</_>
- <_>
- 10 2 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309309698641300</threshold>
- <left_val>-0.3218415975570679</left_val>
- <right_val>0.3261575996875763</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 2 2 -1.</_>
- <_>
- 1 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8891479596495628e-003</threshold>
- <left_val>-0.5894880890846252</left_val>
- <right_val>0.1343344002962112</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0474298447370529e-003</threshold>
- <left_val>0.1313284933567047</left_val>
- <right_val>-0.6860215067863464</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5555791631340981e-003</threshold>
- <left_val>0.0981872826814651</left_val>
- <right_val>-0.6792752742767334</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 6 1 -1.</_>
- <_>
- 15 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1676879152655602e-003</threshold>
- <left_val>0.1139028966426849</left_val>
- <right_val>-0.2320346981287003</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 5 2 -1.</_>
- <_>
- 4 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164961200207472</threshold>
- <left_val>0.2569769024848938</left_val>
- <right_val>-0.2660340964794159</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 6 1 -1.</_>
- <_>
- 15 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0964340418577194</threshold>
- <left_val>-0.6803668737411499</left_val>
- <right_val>0.0261034406721592</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 6 1 -1.</_>
- <_>
- 5 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101298801600933</threshold>
- <left_val>0.2653768062591553</left_val>
- <right_val>-0.2865482866764069</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5491649759933352e-004</threshold>
- <left_val>-0.4500123858451843</left_val>
- <right_val>0.1557054072618485</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 1 -1.</_>
- <_>
- 4 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108793601393700</threshold>
- <left_val>0.2852602899074554</left_val>
- <right_val>-0.2204159051179886</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 4 3 1 -1.</_>
- <_>
- 19 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133209601044655</threshold>
- <left_val>-0.6286336183547974</left_val>
- <right_val>0.0756023898720741</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 3 1 -1.</_>
- <_>
- 2 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1701131314039230e-003</threshold>
- <left_val>0.1067252978682518</left_val>
- <right_val>-0.5646225214004517</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 5 -1.</_>
- <_>
- 9 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1756207942962647</threshold>
- <left_val>0.6023464798927307</left_val>
- <right_val>-0.1105926036834717</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 6 2 5 1 2.</_>
- <_>
- 11 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0341055616736412</threshold>
- <left_val>0.1336347013711929</left_val>
- <right_val>-0.4956767857074738</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 8 2 -1.</_>
- <_>
- 12 2 4 1 2.</_>
- <_>
- 8 3 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0643843710422516</threshold>
- <left_val>-0.5880644917488098</left_val>
- <right_val>0.0320239402353764</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 2 -1.</_>
- <_>
- 6 2 4 1 2.</_>
- <_>
- 10 3 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0460324808955193</threshold>
- <left_val>-0.6143289804458618</left_val>
- <right_val>0.0994031131267548</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 5 3 -1.</_>
- <_>
- 16 2 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0384022481739521</threshold>
- <left_val>0.1604094058275223</left_val>
- <right_val>-0.1873051971197128</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 21 3 -1.</_>
- <_>
- 7 2 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4709807038307190</threshold>
- <left_val>-0.8141909837722778</left_val>
- <right_val>0.0628029108047485</right_val></_></_></trees>
- <stage_threshold>-1.7498610019683838</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 2 -1.</_>
- <_>
- 10 2 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4078958034515381</threshold>
- <left_val>-2.1667710097972304e-004</left_val>
- <right_val>4.0943940429687500e+003</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 3 -1.</_>
- <_>
- 8 0 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2218903005123138</threshold>
- <left_val>-0.5719025731086731</left_val>
- <right_val>0.3176411092281342</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0679081231355667</threshold>
- <left_val>0.4214872121810913</left_val>
- <right_val>-0.4698249995708466</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1082796677947044e-003</threshold>
- <left_val>0.1225956007838249</left_val>
- <right_val>-0.4136815965175629</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 3 -1.</_>
- <_>
- 10 1 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175196807831526</threshold>
- <left_val>-0.3862532973289490</left_val>
- <right_val>0.3089705109596252</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 5 4 -1.</_>
- <_>
- 17 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0811933875083923</threshold>
- <left_val>-0.6375020742416382</left_val>
- <right_val>0.3839319050312042</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 16 2 -1.</_>
- <_>
- 6 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1475138068199158</threshold>
- <left_val>-0.4631600081920624</left_val>
- <right_val>0.2451909929513931</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 2 1 -1.</_>
- <_>
- 20 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6391459181904793e-003</threshold>
- <left_val>0.2801133990287781</left_val>
- <right_val>-0.3114584088325501</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 1 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5532179279252887e-004</threshold>
- <left_val>0.2138828039169312</left_val>
- <right_val>-0.4466992020606995</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 5 4 -1.</_>
- <_>
- 17 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3518253862857819</threshold>
- <left_val>0.0239298101514578</left_val>
- <right_val>-0.8244767785072327</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 5 4 -1.</_>
- <_>
- 0 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0724168568849564</threshold>
- <left_val>-0.3899424076080322</left_val>
- <right_val>0.1848614960908890</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 4 1 -1.</_>
- <_>
- 13 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0123144201934338</threshold>
- <left_val>0.1169440001249313</left_val>
- <right_val>-0.1624529063701630</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 8 2 -1.</_>
- <_>
- 7 3 4 1 2.</_>
- <_>
- 11 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0420644916594028</threshold>
- <left_val>0.1099952012300491</left_val>
- <right_val>-0.7158398032188416</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 11 0 6 2 2.</_>
- <_>
- 5 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1470896005630493</threshold>
- <left_val>0.0647203177213669</left_val>
- <right_val>-0.7278063297271729</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 2 2 -1.</_>
- <_>
- 10 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5739437490701675e-003</threshold>
- <left_val>-0.6512069702148438</left_val>
- <right_val>0.0646309629082680</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 20 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4884249432943761e-004</threshold>
- <left_val>-0.3854041993618012</left_val>
- <right_val>0.1037364006042481</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0264389351941645e-004</threshold>
- <left_val>-0.3517409861087799</left_val>
- <right_val>0.1335210949182510</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 4 3 -1.</_>
- <_>
- 15 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0396366305649281</threshold>
- <left_val>0.3242065906524658</left_val>
- <right_val>-0.1959009021520615</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 5 -1.</_>
- <_>
- 11 0 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399224609136581</threshold>
- <left_val>-0.1189560964703560</left_val>
- <right_val>0.4463477134704590</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 6 4 -1.</_>
- <_>
- 11 1 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1424928009510040</threshold>
- <left_val>0.5641438961029053</left_val>
- <right_val>-0.0645077601075172</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 9 4 -1.</_>
- <_>
- 9 1 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3615724146366119</threshold>
- <left_val>-0.1685543954372406</left_val>
- <right_val>0.3474895954132080</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 20 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0400573015213013</threshold>
- <left_val>0.0593593604862690</left_val>
- <right_val>-0.5140206813812256</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2065549748949707e-004</threshold>
- <left_val>-0.5201929211616516</left_val>
- <right_val>0.1044785976409912</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 20 2 -1.</_>
- <_>
- 12 3 10 1 2.</_>
- <_>
- 2 4 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0759185999631882</threshold>
- <left_val>0.0590211711823940</left_val>
- <right_val>-0.6039643287658691</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 1 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8088903576135635e-003</threshold>
- <left_val>-0.3051787912845612</left_val>
- <right_val>0.1959865987300873</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115059996023774</threshold>
- <left_val>-0.6903548240661621</left_val>
- <right_val>0.0959663167595863</right_val></_></_></trees>
- <stage_threshold>-1.6923429965972900</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 5 4 -1.</_>
- <_>
- 3 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0899427011609077</threshold>
- <left_val>-0.5580319166183472</left_val>
- <right_val>0.3151051104068756</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 3 -1.</_>
- <_>
- 10 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1411668062210083</threshold>
- <left_val>-0.3545598089694977</left_val>
- <right_val>0.3423449099063873</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0490742996335030</threshold>
- <left_val>0.2842924892902374</left_val>
- <right_val>-0.4762968122959137</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 18 4 -1.</_>
- <_>
- 11 1 9 2 2.</_>
- <_>
- 2 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0889812335371971</threshold>
- <left_val>0.2126241028308868</left_val>
- <right_val>-0.5920116901397705</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 18 2 -1.</_>
- <_>
- 8 1 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4573613107204437</threshold>
- <left_val>-0.3411006033420563</left_val>
- <right_val>0.3183233141899109</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.0847789710387588e-004</threshold>
- <left_val>0.0920471474528313</left_val>
- <right_val>-0.1928243935108185</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.5638268562033772e-004</threshold>
- <left_val>0.1802701950073242</left_val>
- <right_val>-0.5007755756378174</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0436275489628315</threshold>
- <left_val>-0.7093405723571777</left_val>
- <right_val>0.0261410400271416</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.2148039968451485e-004</threshold>
- <left_val>0.1780470013618469</left_val>
- <right_val>-0.3874286115169525</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 1 -1.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6614202223718166e-003</threshold>
- <left_val>0.0952365696430206</left_val>
- <right_val>-0.6419975161552429</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 2 1 -1.</_>
- <_>
- 5 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101335803046823</threshold>
- <left_val>0.0453622788190842</left_val>
- <right_val>-0.7391591072082520</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 3 3 -1.</_>
- <_>
- 17 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4527491815388203e-003</threshold>
- <left_val>0.3466396927833557</left_val>
- <right_val>-0.4109731018543243</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 5 0 6 2 2.</_>
- <_>
- 11 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1865476965904236</threshold>
- <left_val>0.0465162917971611</left_val>
- <right_val>-0.7623959183692932</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 16 4 -1.</_>
- <_>
- 10 1 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3488784134387970</threshold>
- <left_val>0.0447669401764870</left_val>
- <right_val>-0.3729743957519531</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0129990130662918e-003</threshold>
- <left_val>0.0924227014183998</left_val>
- <right_val>-0.5618343949317932</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 5 3 -1.</_>
- <_>
- 15 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0786369368433952</threshold>
- <left_val>0.4578678905963898</left_val>
- <right_val>-0.1665771007537842</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 11 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1211623996496201</threshold>
- <left_val>-0.0831817314028740</left_val>
- <right_val>0.5231279730796814</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8915069522336125e-003</threshold>
- <left_val>-0.4330990016460419</left_val>
- <right_val>0.1231160014867783</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 1 -1.</_>
- <_>
- 9 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0347660891711712</threshold>
- <left_val>-0.3878085017204285</left_val>
- <right_val>0.1319140046834946</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0523517988622189</threshold>
- <left_val>-0.0746845230460167</left_val>
- <right_val>0.4756622910499573</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 1 4 -1.</_>
- <_>
- 6 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0303400792181492</threshold>
- <left_val>0.1988417953252792</left_val>
- <right_val>-0.2310146987438202</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 2 -1.</_>
- <_>
- 15 2 1 1 2.</_>
- <_>
- 14 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8641840480268002e-003</threshold>
- <left_val>-0.0894825384020805</left_val>
- <right_val>0.2937439978122711</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 12 1 -1.</_>
- <_>
- 6 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0714182108640671</threshold>
- <left_val>-0.5831571817398071</left_val>
- <right_val>0.0824320167303085</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 16 2 -1.</_>
- <_>
- 11 3 8 1 2.</_>
- <_>
- 3 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0846038311719894</threshold>
- <left_val>-0.7170382738113403</left_val>
- <right_val>0.0465656407177448</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 4 3 -1.</_>
- <_>
- 3 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0594934485852718</threshold>
- <left_val>0.3473120033740997</left_val>
- <right_val>-0.1196561008691788</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1099494025111198</threshold>
- <left_val>-7.9890703782439232e-003</left_val>
- <right_val>0.3411171138286591</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491113886237144</threshold>
- <left_val>-0.1024158969521523</left_val>
- <right_val>0.4681828022003174</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 9 3 -1.</_>
- <_>
- 10 2 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3636780977249146</threshold>
- <left_val>-0.0831590816378593</left_val>
- <right_val>0.3714585900306702</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 5 -1.</_>
- <_>
- 11 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1586533933877945</threshold>
- <left_val>0.5047429800033569</left_val>
- <right_val>-0.0834626629948616</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 4 2 -1.</_>
- <_>
- 12 3 2 1 2.</_>
- <_>
- 10 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251513607800007</threshold>
- <left_val>-0.4532653093338013</left_val>
- <right_val>0.0780590176582336</right_val></_></_></trees>
- <stage_threshold>-1.6187490224838257</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 16 2 -1.</_>
- <_>
- 6 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1649594008922577</threshold>
- <left_val>-0.6332700848579407</left_val>
- <right_val>0.2166659981012344</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 4 -1.</_>
- <_>
- 13 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0438757613301277</threshold>
- <left_val>0.3239826858043671</left_val>
- <right_val>-0.5365409255027771</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 2 -1.</_>
- <_>
- 0 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6001587808132172e-003</threshold>
- <left_val>-0.5327348709106445</left_val>
- <right_val>0.1838084012269974</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 5 -1.</_>
- <_>
- 10 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0787055194377899</threshold>
- <left_val>-0.3804650902748108</left_val>
- <right_val>0.0857776030898094</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 1 -1.</_>
- <_>
- 4 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9123762920498848e-003</threshold>
- <left_val>0.3097468018531799</left_val>
- <right_val>-0.3024269938468933</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 4 -1.</_>
- <_>
- 10 0 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2142370939254761</threshold>
- <left_val>-0.1307654976844788</left_val>
- <right_val>0.1546590030193329</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 12 1 -1.</_>
- <_>
- 10 2 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0385532900691032</threshold>
- <left_val>-0.4112997949123383</left_val>
- <right_val>0.2216213941574097</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 1 2 -1.</_>
- <_>
- 21 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4947660858742893e-004</threshold>
- <left_val>-0.3958852887153626</left_val>
- <right_val>0.1867167949676514</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 1 -1.</_>
- <_>
- 5 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3194089590106159e-004</threshold>
- <left_val>0.2296389937400818</left_val>
- <right_val>-0.2885102033615112</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102821402251720</threshold>
- <left_val>0.0711410716176033</left_val>
- <right_val>-0.7497838139533997</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 5 2 -1.</_>
- <_>
- 0 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198998004198074</threshold>
- <left_val>-0.3733910024166107</left_val>
- <right_val>0.1427987068891525</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 11 3 11 1 2.</_>
- <_>
- 0 4 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0910358279943466</threshold>
- <left_val>0.0707562267780304</left_val>
- <right_val>-0.6638950705528259</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 4 -1.</_>
- <_>
- 10 1 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393848381936550</threshold>
- <left_val>-0.2262676954269409</left_val>
- <right_val>0.2464784979820252</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109996302053332</threshold>
- <left_val>-0.2625407874584198</left_val>
- <right_val>0.1163086965680122</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 10 2 -1.</_>
- <_>
- 6 0 5 1 2.</_>
- <_>
- 11 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0518086813390255</threshold>
- <left_val>-0.5961403250694275</left_val>
- <right_val>0.0859828814864159</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 5 3 -1.</_>
- <_>
- 16 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0737882182002068</threshold>
- <left_val>0.2593846023082733</left_val>
- <right_val>-0.1041978970170021</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 5 3 -1.</_>
- <_>
- 1 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0469907410442829</threshold>
- <left_val>-0.1350554972887039</left_val>
- <right_val>0.4308831989765167</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7187450155615807e-003</threshold>
- <left_val>-0.6842281222343445</left_val>
- <right_val>0.1098759025335312</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 3 -1.</_>
- <_>
- 1 2 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5397530882619321e-004</threshold>
- <left_val>0.1443437933921814</left_val>
- <right_val>-0.3249225914478302</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142436400055885</threshold>
- <left_val>0.0255800206214190</left_val>
- <right_val>-0.7005106210708618</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 11 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1305900961160660</threshold>
- <left_val>0.4823197126388550</left_val>
- <right_val>-0.0978557989001274</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177217200398445</threshold>
- <left_val>-0.7623056173324585</left_val>
- <right_val>0.0316688083112240</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2830806970596313e-003</threshold>
- <left_val>-0.5619375705718994</left_val>
- <right_val>0.0765757337212563</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 12 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4865049635991454e-004</threshold>
- <left_val>-0.4124997854232788</left_val>
- <right_val>0.1330009996891022</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147960502654314</threshold>
- <left_val>-0.6981794238090515</left_val>
- <right_val>0.0525363907217979</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1445972025394440</threshold>
- <left_val>8.0330166965723038e-003</left_val>
- <right_val>-0.8675752878189087</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157956108450890</threshold>
- <left_val>-0.2927311062812805</left_val>
- <right_val>0.1363624930381775</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 3 1 -1.</_>
- <_>
- 15 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131048103794456</threshold>
- <left_val>-0.2231092005968094</left_val>
- <right_val>0.5772743821144104</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 5 -1.</_>
- <_>
- 11 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2230173945426941</threshold>
- <left_val>-0.0933012813329697</left_val>
- <right_val>0.4945294857025147</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 6 1 -1.</_>
- <_>
- 18 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0496648699045181</threshold>
- <left_val>-0.5187855958938599</left_val>
- <right_val>0.0345804914832115</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 1 -1.</_>
- <_>
- 2 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459476113319397</threshold>
- <left_val>-0.6596763730049133</left_val>
- <right_val>0.0588447116315365</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 4 2 -1.</_>
- <_>
- 20 0 2 1 2.</_>
- <_>
- 18 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104044098407030</threshold>
- <left_val>0.2622630894184113</left_val>
- <right_val>-0.1861764937639237</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 6 1 -1.</_>
- <_>
- 10 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291253700852394</threshold>
- <left_val>-0.1883364021778107</left_val>
- <right_val>0.2108985930681229</right_val></_></_></trees>
- <stage_threshold>-1.6774560213088989</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 1 -1.</_>
- <_>
- 5 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0276011899113655</threshold>
- <left_val>0.2859902083873749</left_val>
- <right_val>-0.4109694063663483</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 14 1 -1.</_>
- <_>
- 6 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378576517105103</threshold>
- <left_val>-0.4589497148990631</left_val>
- <right_val>0.1315708011388779</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 14 1 -1.</_>
- <_>
- 9 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0878514498472214</threshold>
- <left_val>-0.4639217853546143</left_val>
- <right_val>0.2676733136177063</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 2 1 -1.</_>
- <_>
- 20 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6995318047702312e-003</threshold>
- <left_val>0.3444162905216217</left_val>
- <right_val>-0.3575634062290192</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 2 -1.</_>
- <_>
- 3 1 1 1 2.</_>
- <_>
- 4 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1192200074438006e-004</threshold>
- <left_val>0.2853515148162842</left_val>
- <right_val>-0.2509905099868774</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 5 4 -1.</_>
- <_>
- 13 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0733317583799362</threshold>
- <left_val>-0.5104925036430359</left_val>
- <right_val>0.2084199935197830</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0705135166645050</threshold>
- <left_val>-0.2943550050258637</left_val>
- <right_val>0.2490831017494202</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 1 2 -1.</_>
- <_>
- 20 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4877820396795869e-004</threshold>
- <left_val>-0.4530136883258820</left_val>
- <right_val>0.1106069982051849</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 2 -1.</_>
- <_>
- 0 1 1 1 2.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4712569322437048e-003</threshold>
- <left_val>0.2818650007247925</left_val>
- <right_val>-0.2202538996934891</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 1 -1.</_>
- <_>
- 13 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4717900669202209e-004</threshold>
- <left_val>-0.2456589937210083</left_val>
- <right_val>0.0864437595009804</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2986420188099146e-004</threshold>
- <left_val>-0.3502730131149292</left_val>
- <right_val>0.1467843949794769</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 3 2 -1.</_>
- <_>
- 19 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690452903509140</threshold>
- <left_val>0.0304644200950861</left_val>
- <right_val>-0.6050962805747986</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 2 -1.</_>
- <_>
- 0 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7935361140407622e-004</threshold>
- <left_val>-0.6039000153541565</left_val>
- <right_val>0.0861184969544411</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 11 0 6 2 2.</_>
- <_>
- 5 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1428222954273224</threshold>
- <left_val>-0.5724645256996155</left_val>
- <right_val>0.0726439207792282</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 5 4 -1.</_>
- <_>
- 4 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0361952185630798</threshold>
- <left_val>0.1450850069522858</left_val>
- <right_val>-0.2987934052944183</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 3 -1.</_>
- <_>
- 16 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306622795760632</threshold>
- <left_val>0.2218796014785767</left_val>
- <right_val>-0.1656057983636856</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 3 -1.</_>
- <_>
- 3 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0419924110174179</threshold>
- <left_val>-0.1077400967478752</left_val>
- <right_val>0.4818230867385864</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 10 2 -1.</_>
- <_>
- 12 2 5 1 2.</_>
- <_>
- 7 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0799415111541748</threshold>
- <left_val>-0.4717141985893250</left_val>
- <right_val>0.0374956503510475</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 10 2 -1.</_>
- <_>
- 5 2 5 1 2.</_>
- <_>
- 10 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0640278682112694</threshold>
- <left_val>-0.6457813978195190</left_val>
- <right_val>0.0705836564302444</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 1 -1.</_>
- <_>
- 15 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1864910377189517e-004</threshold>
- <left_val>0.1457661986351013</left_val>
- <right_val>-0.2679316103458405</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141139999032021</threshold>
- <left_val>-0.7731025218963623</left_val>
- <right_val>0.0430315397679806</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 1 -1.</_>
- <_>
- 15 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275833904743195</threshold>
- <left_val>-0.4605224132537842</left_val>
- <right_val>0.0125418798997998</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 5 4 -1.</_>
- <_>
- 4 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3208009004592896</threshold>
- <left_val>0.0386559292674065</left_val>
- <right_val>-0.8062068819999695</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358313098549843</threshold>
- <left_val>-0.0662941709160805</left_val>
- <right_val>0.3263883888721466</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0798180103302002</threshold>
- <left_val>0.4167965948581696</left_val>
- <right_val>-0.0912656933069229</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6545161381363869e-004</threshold>
- <left_val>0.1101180985569954</left_val>
- <right_val>-0.1570180058479309</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 4 1 -1.</_>
- <_>
- 5 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4198470055125654e-004</threshold>
- <left_val>0.1352030038833618</left_val>
- <right_val>-0.2412625998258591</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9970320910215378e-003</threshold>
- <left_val>0.0612093694508076</left_val>
- <right_val>-0.4995999932289124</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 1 -1.</_>
- <_>
- 9 1 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1872068941593170</threshold>
- <left_val>0.0565490201115608</left_val>
- <right_val>-0.5114173293113709</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0253924299031496</threshold>
- <left_val>0.0129433795809746</left_val>
- <right_val>-0.5729435086250305</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 3 1 -1.</_>
- <_>
- 6 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195981692522764</threshold>
- <left_val>-0.0810285732150078</left_val>
- <right_val>0.4177010953426361</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305633507668972</threshold>
- <left_val>-0.7735412716865540</left_val>
- <right_val>0.0178344994783401</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 1 -1.</_>
- <_>
- 5 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0175109803676605</threshold>
- <left_val>-0.5898250937461853</left_val>
- <right_val>0.0511760301887989</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 2 2 -1.</_>
- <_>
- 20 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0173909664154053e-003</threshold>
- <left_val>-0.0888880565762520</left_val>
- <right_val>0.2514989078044891</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0300783291459084</threshold>
- <left_val>-0.0514235198497772</left_val>
- <right_val>0.6026620864868164</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126525200903416</threshold>
- <left_val>0.0528747402131557</left_val>
- <right_val>-0.6824123263359070</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2671189324464649e-004</threshold>
- <left_val>-0.3352496922016144</left_val>
- <right_val>0.0812006071209908</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 6 3 -1.</_>
- <_>
- 12 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1868032962083817</threshold>
- <left_val>-0.0543627701699734</left_val>
- <right_val>0.5235478281974793</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 3 -1.</_>
- <_>
- 8 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1757044047117233</threshold>
- <left_val>-0.0570032894611359</left_val>
- <right_val>0.6137328147888184</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 21 3 -1.</_>
- <_>
- 8 2 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0384310483932495</threshold>
- <left_val>0.0551427192986012</left_val>
- <right_val>-0.6189894080162048</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 2 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6805290728807449e-003</threshold>
- <left_val>-0.3422321081161499</left_val>
- <right_val>0.0896903723478317</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155965797603130</threshold>
- <left_val>-0.6740226745605469</left_val>
- <right_val>0.0233169402927160</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3065250180661678e-003</threshold>
- <left_val>-0.3375357985496521</left_val>
- <right_val>0.0814909264445305</right_val></_></_></trees>
- <stage_threshold>-1.5980160236358643</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 10 2 -1.</_>
- <_>
- 8 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1805859059095383</threshold>
- <left_val>-0.5300660729408264</left_val>
- <right_val>0.3023838102817535</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 3 3 -1.</_>
- <_>
- 17 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141021898016334</threshold>
- <left_val>0.3699227869510651</left_val>
- <right_val>-0.3241744935512543</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108758499845862</threshold>
- <left_val>0.2569321095943451</left_val>
- <right_val>-0.3242481946945190</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 2 3 -1.</_>
- <_>
- 11 1 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194290298968554</threshold>
- <left_val>-0.2157842963933945</left_val>
- <right_val>0.2595477998256683</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.3504539169371128e-004</threshold>
- <left_val>0.1525973975658417</left_val>
- <right_val>-0.4900175929069519</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 20 1 -1.</_>
- <_>
- 6 2 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1486748009920120</threshold>
- <left_val>-0.2519808113574982</left_val>
- <right_val>0.2343989014625549</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 4 -1.</_>
- <_>
- 8 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0196727998554707</threshold>
- <left_val>0.2408549040555954</left_val>
- <right_val>-0.2088024020195007</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 1 -1.</_>
- <_>
- 13 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9412939329631627e-004</threshold>
- <left_val>-0.2093092948198319</left_val>
- <right_val>0.0832172483205795</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 5 3 -1.</_>
- <_>
- 0 2 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0493621714413166</threshold>
- <left_val>0.1794568002223969</left_val>
- <right_val>-0.2633988857269287</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 1 -1.</_>
- <_>
- 13 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261217802762985</threshold>
- <left_val>0.0257237199693918</left_val>
- <right_val>-0.7157145142555237</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5359389837831259e-004</threshold>
- <left_val>-0.3620828092098236</left_val>
- <right_val>0.1422941982746124</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 20 4 -1.</_>
- <_>
- 12 1 10 2 2.</_>
- <_>
- 2 3 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0235242508351803</threshold>
- <left_val>0.1308255940675736</left_val>
- <right_val>-0.3133119940757752</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 3 1 1 2.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8964199009351432e-004</threshold>
- <left_val>-0.2955313920974731</left_val>
- <right_val>0.1612772941589356</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 1 2 -1.</_>
- <_>
- 21 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6771971285343170e-003</threshold>
- <left_val>-0.5337281823158264</left_val>
- <right_val>0.0379088483750820</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 1 2 -1.</_>
- <_>
- 0 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7393171330913901e-004</threshold>
- <left_val>-0.3874318897724152</left_val>
- <right_val>0.1068056002259255</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 5 3 -1.</_>
- <_>
- 15 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0495587587356567</threshold>
- <left_val>0.2524808943271637</left_val>
- <right_val>-0.1970293968915939</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0312841311097145</threshold>
- <left_val>-0.5490162968635559</left_val>
- <right_val>0.0832718536257744</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0513014905154705</threshold>
- <left_val>0.0564396493136883</left_val>
- <right_val>-0.3952826857566834</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 10 2 -1.</_>
- <_>
- 5 3 5 1 2.</_>
- <_>
- 10 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0658741071820259</threshold>
- <left_val>-0.6600760817527771</left_val>
- <right_val>0.0510393418371677</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 2 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0428369902074337</threshold>
- <left_val>-0.4695188999176025</left_val>
- <right_val>0.0248056892305613</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 2 -1.</_>
- <_>
- 6 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398169495165348</threshold>
- <left_val>-0.5390306711196899</left_val>
- <right_val>0.0625655874609947</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 21 3 -1.</_>
- <_>
- 8 1 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9633435010910034</threshold>
- <left_val>0.0700931474566460</left_val>
- <right_val>-0.5051229000091553</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 6 2 -1.</_>
- <_>
- 3 3 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0903004035353661</threshold>
- <left_val>-0.6060277223587036</left_val>
- <right_val>0.0478441901504993</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 16 1 -1.</_>
- <_>
- 10 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1164717003703117</threshold>
- <left_val>0.0378020592033863</left_val>
- <right_val>-0.4255815148353577</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 1 -1.</_>
- <_>
- 4 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1410460025072098</threshold>
- <left_val>0.0533077791333199</left_val>
- <right_val>-0.6477444171905518</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 18 3 -1.</_>
- <_>
- 8 2 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2245392948389053</threshold>
- <left_val>-0.7423505783081055</left_val>
- <right_val>0.0394205302000046</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122074596583843</threshold>
- <left_val>0.0411594882607460</left_val>
- <right_val>-0.6247044801712036</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 10 4 -1.</_>
- <_>
- 11 0 5 2 2.</_>
- <_>
- 6 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1298917979001999</threshold>
- <left_val>-0.5020244121551514</left_val>
- <right_val>0.0506085492670536</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 5 0 6 2 2.</_>
- <_>
- 11 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1336773037910461</threshold>
- <left_val>-0.5980725884437561</left_val>
- <right_val>0.0515021793544292</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7120931190438569e-004</threshold>
- <left_val>0.0942272767424583</left_val>
- <right_val>-0.1869352012872696</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 11 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1016910001635552</threshold>
- <left_val>0.3284361064434052</left_val>
- <right_val>-0.0879324078559875</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 5 -1.</_>
- <_>
- 9 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1026913970708847</threshold>
- <left_val>0.3691394925117493</left_val>
- <right_val>-0.0939211919903755</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 3 1 -1.</_>
- <_>
- 1 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103968000039458</threshold>
- <left_val>0.2735032141208649</left_val>
- <right_val>-0.1099518015980721</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216865707188845</threshold>
- <left_val>-0.5431079864501953</left_val>
- <right_val>0.0354094617068768</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109911598265171</threshold>
- <left_val>0.3313341140747070</left_val>
- <right_val>-0.0947989076375961</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0330941900610924</threshold>
- <left_val>-0.0676039010286331</left_val>
- <right_val>0.3759680092334747</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 1 -1.</_>
- <_>
- 6 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112865697592497</threshold>
- <left_val>0.0597827509045601</left_val>
- <right_val>-0.5113244056701660</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 2 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0276136603206396</threshold>
- <left_val>-0.1408299952745438</left_val>
- <right_val>0.0276922807097435</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 1 -1.</_>
- <_>
- 7 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0249390397220850</threshold>
- <left_val>-0.3940435945987701</left_val>
- <right_val>0.0746763870120049</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 2 -1.</_>
- <_>
- 11 3 3 1 2.</_>
- <_>
- 8 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205240696668625</threshold>
- <left_val>-0.3604283034801483</left_val>
- <right_val>0.0740412473678589</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4007459916174412e-003</threshold>
- <left_val>0.2836787998676300</left_val>
- <right_val>-0.1014788970351219</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 3 -1.</_>
- <_>
- 10 3 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6708089709281921</threshold>
- <left_val>0.0458825901150703</left_val>
- <right_val>-0.3361695110797882</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0396798886358738</threshold>
- <left_val>-0.5256633162498474</left_val>
- <right_val>0.0545992814004421</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0873271971940994</threshold>
- <left_val>0.1675004065036774</left_val>
- <right_val>-0.0436225607991219</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0646117925643921</threshold>
- <left_val>-0.0736591815948486</left_val>
- <right_val>0.3831464052200317</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 12 5 -1.</_>
- <_>
- 13 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2210538983345032</threshold>
- <left_val>0.1044782996177673</left_val>
- <right_val>-0.1711664050817490</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 5 4 -1.</_>
- <_>
- 3 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0539337508380413</threshold>
- <left_val>-0.2961969971656799</left_val>
- <right_val>0.0962876006960869</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 2 -1.</_>
- <_>
- 13 2 9 1 2.</_>
- <_>
- 4 3 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275479797273874</threshold>
- <left_val>0.1263362020254135</left_val>
- <right_val>-0.1437083035707474</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 10 1 -1.</_>
- <_>
- 6 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0796272605657578</threshold>
- <left_val>-0.6720743179321289</left_val>
- <right_val>0.0428085103631020</right_val></_></_></trees>
- <stage_threshold>-1.5710469484329224</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 18 2 -1.</_>
- <_>
- 8 1 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3998445868492127</threshold>
- <left_val>-0.4929730892181397</left_val>
- <right_val>0.2782056927680969</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 3 2 -1.</_>
- <_>
- 17 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119401095435023</threshold>
- <left_val>0.2959083914756775</left_val>
- <right_val>-0.2993519008159638</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0412777606397867e-004</threshold>
- <left_val>-0.5137457251548767</left_val>
- <right_val>0.1482059955596924</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 3 -1.</_>
- <_>
- 17 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0688273012638092</threshold>
- <left_val>0.3283458054065704</left_val>
- <right_val>-0.2109878957271576</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 1 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6670019142329693e-003</threshold>
- <left_val>0.1691143065690994</left_val>
- <right_val>-0.3861491084098816</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 6 1 -1.</_>
- <_>
- 10 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176661405712366</threshold>
- <left_val>-0.2767274081707001</left_val>
- <right_val>0.2180189043283463</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 1 2 -1.</_>
- <_>
- 4 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4831801466643810e-003</threshold>
- <left_val>-0.3848891854286194</left_val>
- <right_val>0.1618614047765732</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 1 -1.</_>
- <_>
- 12 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162510108202696</threshold>
- <left_val>-0.4621725976467133</left_val>
- <right_val>0.0491471998393536</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9933170774020255e-004</threshold>
- <left_val>-0.4533613026142120</left_val>
- <right_val>0.1046027988195419</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 3 3 -1.</_>
- <_>
- 17 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152971800416708</threshold>
- <left_val>-0.1411347985267639</left_val>
- <right_val>0.1143492013216019</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3068820163607597e-003</threshold>
- <left_val>0.1626427024602890</left_val>
- <right_val>-0.3108170926570892</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 1 -1.</_>
- <_>
- 17 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127446297556162</threshold>
- <left_val>-0.6617395281791687</left_val>
- <right_val>0.0678442120552063</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 4 -1.</_>
- <_>
- 2 0 8 2 2.</_>
- <_>
- 10 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1055942028760910</threshold>
- <left_val>-0.5133383274078369</left_val>
- <right_val>0.0710626021027565</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 1 -1.</_>
- <_>
- 17 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219584405422211</threshold>
- <left_val>0.0136620104312897</left_val>
- <right_val>-0.5351728200912476</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 2 -1.</_>
- <_>
- 0 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160341896116734</threshold>
- <left_val>-0.3528763949871063</left_val>
- <right_val>0.1049050986766815</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 3 1 -1.</_>
- <_>
- 14 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5577318891882896e-003</threshold>
- <left_val>0.2148994952440262</left_val>
- <right_val>-0.1989417970180512</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 1 -1.</_>
- <_>
- 4 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119234798476100</threshold>
- <left_val>-0.5207656025886536</left_val>
- <right_val>0.0676394701004028</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 11 3 11 1 2.</_>
- <_>
- 0 4 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0866749063134193</threshold>
- <left_val>0.0580227002501488</left_val>
- <right_val>-0.5696936249732971</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 1 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3583239817526191e-004</threshold>
- <left_val>0.1667681038379669</left_val>
- <right_val>-0.2129307985305786</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 2 -1.</_>
- <_>
- 12 0 1 1 2.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2656060173176229e-004</threshold>
- <left_val>-0.1072390004992485</left_val>
- <right_val>0.0803407803177834</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 2 -1.</_>
- <_>
- 7 0 4 1 2.</_>
- <_>
- 11 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0386192686855793</threshold>
- <left_val>-0.4828197956085205</left_val>
- <right_val>0.0643176063895226</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6343471147119999e-003</threshold>
- <left_val>0.1646926999092102</left_val>
- <right_val>-0.1258600950241089</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 8 4 -1.</_>
- <_>
- 8 1 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1356738954782486</threshold>
- <left_val>0.6871178150177002</left_val>
- <right_val>-0.0454019382596016</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9284181334078312e-003</threshold>
- <left_val>-0.4460243880748749</left_val>
- <right_val>0.0777442976832390</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 2 -1.</_>
- <_>
- 6 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0387219600379467</threshold>
- <left_val>-0.7954596281051636</left_val>
- <right_val>0.0272730290889740</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7111990493722260e-004</threshold>
- <left_val>-0.0614648200571537</left_val>
- <right_val>0.0866360515356064</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9391563087701797e-003</threshold>
- <left_val>0.3204261958599091</left_val>
- <right_val>-0.0944261327385902</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 9 4 -1.</_>
- <_>
- 12 1 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4060023128986359</threshold>
- <left_val>-0.0145072499290109</left_val>
- <right_val>0.4007146060466766</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 9 4 -1.</_>
- <_>
- 7 1 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3527463972568512</threshold>
- <left_val>-0.0487828403711319</left_val>
- <right_val>0.5863348841667175</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 2 -1.</_>
- <_>
- 12 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6537929079495370e-004</threshold>
- <left_val>0.1614083945751190</left_val>
- <right_val>-0.2104136943817139</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123199503868818</threshold>
- <left_val>-0.5973966121673584</left_val>
- <right_val>0.0406296215951443</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138495601713657</threshold>
- <left_val>-0.6877948045730591</left_val>
- <right_val>0.0282975994050503</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 1 -1.</_>
- <_>
- 6 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0354750924743712e-004</threshold>
- <left_val>0.1138406991958618</left_val>
- <right_val>-0.2150139063596726</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 1 2 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0391069613397121</threshold>
- <left_val>-0.2260058969259262</left_val>
- <right_val>0.0395268090069294</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0280955005437136</threshold>
- <left_val>-0.3595007956027985</left_val>
- <right_val>0.0747360736131668</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 18 3 -1.</_>
- <_>
- 9 2 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2125611007213593</threshold>
- <left_val>-0.7109876275062561</left_val>
- <right_val>0.0418695993721485</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9028336331248283e-003</threshold>
- <left_val>0.3095433115959168</left_val>
- <right_val>-0.0864241868257523</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117957098409534</threshold>
- <left_val>0.0251334607601166</left_val>
- <right_val>-0.6675676107406616</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106725404039025</threshold>
- <left_val>-0.5725420713424683</left_val>
- <right_val>0.0384541191160679</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 16 2 -1.</_>
- <_>
- 10 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1926015019416809</threshold>
- <left_val>0.0452950112521648</left_val>
- <right_val>-0.3598395884037018</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 2 -1.</_>
- <_>
- 4 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2745896875858307</threshold>
- <left_val>0.0376021713018417</left_val>
- <right_val>-0.6710445284843445</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 1 3 -1.</_>
- <_>
- 21 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293159298598766</threshold>
- <left_val>-0.5799052119255066</left_val>
- <right_val>0.0341134108603001</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 4 -1.</_>
- <_>
- 0 1 9 2 2.</_>
- <_>
- 9 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3456305861473084</threshold>
- <left_val>-0.7732198834419251</left_val>
- <right_val>0.0265457499772310</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1082191988825798</threshold>
- <left_val>0.0265380498021841</left_val>
- <right_val>-0.5127223730087280</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152253303676844</threshold>
- <left_val>-0.2846137881278992</left_val>
- <right_val>0.0950192511081696</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 4 1 -1.</_>
- <_>
- 12 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131285795941949</threshold>
- <left_val>0.2416771054267883</left_val>
- <right_val>-0.0982130095362663</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 5 -1.</_>
- <_>
- 11 0 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394823290407658</threshold>
- <left_val>-0.0841267332434654</left_val>
- <right_val>0.3172164857387543</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 20 1 -1.</_>
- <_>
- 6 2 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2043827027082443</threshold>
- <left_val>-0.0909638777375221</left_val>
- <right_val>0.2731429934501648</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 3 1 -1.</_>
- <_>
- 7 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1871099306736141e-004</threshold>
- <left_val>0.1299407929182053</left_val>
- <right_val>-0.1945798993110657</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 3 -1.</_>
- <_>
- 16 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0935322716832161</threshold>
- <left_val>0.4645681083202362</left_val>
- <right_val>-0.0697620585560799</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 3 -1.</_>
- <_>
- 10 1 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0235948096960783</threshold>
- <left_val>-0.1631298065185547</left_val>
- <right_val>0.1587969064712524</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 2 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0235722996294498</threshold>
- <left_val>0.0342308282852173</left_val>
- <right_val>-0.3910694122314453</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 4 -1.</_>
- <_>
- 10 1 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282188504934311</threshold>
- <left_val>0.4979830086231232</left_val>
- <right_val>-0.0541069991886616</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 1 2 -1.</_>
- <_>
- 21 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0465847887098789</threshold>
- <left_val>-0.4277912080287933</left_val>
- <right_val>0.0418262295424938</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 1 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0116468202322721</threshold>
- <left_val>0.0680371001362801</left_val>
- <right_val>-0.3571461141109467</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 0 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1952639073133469</threshold>
- <left_val>0.2197133004665375</left_val>
- <right_val>-0.1093451976776123</right_val></_></_></trees>
- <stage_threshold>-1.5772149562835693</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0609632283449173</threshold>
- <left_val>0.2623322904109955</left_val>
- <right_val>-0.3996464014053345</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 2 -1.</_>
- <_>
- 12 0 1 1 2.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1858150032348931e-004</threshold>
- <left_val>-0.1874409019947052</left_val>
- <right_val>0.1288761943578720</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 1 4 -1.</_>
- <_>
- 9 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0173382796347141</threshold>
- <left_val>0.1584820002317429</left_val>
- <right_val>-0.4108001887798309</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 16 2 -1.</_>
- <_>
- 8 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1955444961786270</threshold>
- <left_val>-0.4125539958477020</left_val>
- <right_val>0.1684329062700272</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 3 -1.</_>
- <_>
- 7 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168483406305313</threshold>
- <left_val>0.1563276052474976</left_val>
- <right_val>-0.4225837886333466</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 14 4 -1.</_>
- <_>
- 11 1 7 2 2.</_>
- <_>
- 4 3 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0677653029561043</threshold>
- <left_val>0.0884570702910423</left_val>
- <right_val>-0.4574627876281738</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215934794396162</threshold>
- <left_val>0.4310556054115295</left_val>
- <right_val>-0.1118862032890320</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 4 -1.</_>
- <_>
- 11 0 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223255306482315</threshold>
- <left_val>-0.1710696965456009</left_val>
- <right_val>0.1190048009157181</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 3 -1.</_>
- <_>
- 9 1 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0412174686789513</threshold>
- <left_val>0.1152848005294800</left_val>
- <right_val>-0.4270128011703491</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 1 2 -1.</_>
- <_>
- 20 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0137800311204046e-004</threshold>
- <left_val>0.1759393960237503</left_val>
- <right_val>-0.2061759978532791</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 1 2 -1.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0204859902150929e-004</threshold>
- <left_val>-0.5659689903259277</left_val>
- <right_val>0.0891458168625832</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 0 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3092140853404999</threshold>
- <left_val>0.3455514013767242</left_val>
- <right_val>-0.1085027009248734</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 1 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1448230408132076e-003</threshold>
- <left_val>0.1859671026468277</left_val>
- <right_val>-0.2005020976066589</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1202132999897003</threshold>
- <left_val>-0.3477135896682739</left_val>
- <right_val>0.0546781308948994</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 5 -1.</_>
- <_>
- 2 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1437608003616333</threshold>
- <left_val>-0.5411831736564636</left_val>
- <right_val>0.0612141601741314</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 1 -1.</_>
- <_>
- 4 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1203705966472626</threshold>
- <left_val>-0.6147553920745850</left_val>
- <right_val>0.0163895990699530</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 6 2 5 1 2.</_>
- <_>
- 11 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0426739193499088</threshold>
- <left_val>0.0615998990833759</left_val>
- <right_val>-0.4898751974105835</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 1 -1.</_>
- <_>
- 4 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2010595053434372</threshold>
- <left_val>0.0191350802779198</left_val>
- <right_val>-0.4410769045352936</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 1 -1.</_>
- <_>
- 9 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2088223993778229</threshold>
- <left_val>0.0613639801740646</left_val>
- <right_val>-0.5665506720542908</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4317639074288309e-004</threshold>
- <left_val>-0.3790386915206909</left_val>
- <right_val>0.0807705521583557</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 4 1 -1.</_>
- <_>
- 2 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118992803618312</threshold>
- <left_val>0.0513736605644226</left_val>
- <right_val>-0.5124402046203613</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 1 -1.</_>
- <_>
- 17 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152740897610784</threshold>
- <left_val>-0.6556478142738342</left_val>
- <right_val>0.0311766099184752</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 3 -1.</_>
- <_>
- 1 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0204509403556585</threshold>
- <left_val>-0.1100831031799316</left_val>
- <right_val>0.2442660033702850</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 1 4 -1.</_>
- <_>
- 18 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109159899875522</threshold>
- <left_val>-0.3011330962181091</left_val>
- <right_val>0.0846503525972366</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 2 2 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5979440696537495e-003</threshold>
- <left_val>-0.2353952974081039</left_val>
- <right_val>0.1110377013683319</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 1 4 -1.</_>
- <_>
- 18 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0744031295180321</threshold>
- <left_val>0.0265834294259548</left_val>
- <right_val>-0.5290083289146423</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 4 -1.</_>
- <_>
- 3 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6808141097426414e-003</threshold>
- <left_val>-0.3191435039043427</left_val>
- <right_val>0.0917709171772003</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 2 -1.</_>
- <_>
- 15 2 1 1 2.</_>
- <_>
- 14 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9621220892295241e-004</threshold>
- <left_val>-0.2449285984039307</left_val>
- <right_val>0.2619382143020630</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 18 3 -1.</_>
- <_>
- 7 1 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9801648855209351</threshold>
- <left_val>0.0435502082109451</left_val>
- <right_val>-0.5076766014099121</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 1 -1.</_>
- <_>
- 17 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0316224806010723</threshold>
- <left_val>-0.8424624800682068</left_val>
- <right_val>3.8115619681775570e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 4 2 -1.</_>
- <_>
- 8 3 2 1 2.</_>
- <_>
- 10 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235346294939518</threshold>
- <left_val>-0.4160682857036591</left_val>
- <right_val>0.0560476593673229</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 2 -1.</_>
- <_>
- 12 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7265268727205694e-004</threshold>
- <left_val>0.0732600167393684</left_val>
- <right_val>-0.1243783980607987</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 2 -1.</_>
- <_>
- 8 3 3 1 2.</_>
- <_>
- 11 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0328024402260780</threshold>
- <left_val>0.0469187088310719</left_val>
- <right_val>-0.5483862757682800</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 1 -1.</_>
- <_>
- 17 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9037919011898339e-004</threshold>
- <left_val>-0.0764242410659790</left_val>
- <right_val>0.0752542465925217</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 1 -1.</_>
- <_>
- 4 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200249794870615</threshold>
- <left_val>-0.6453238129615784</left_val>
- <right_val>0.0336129702627659</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 2 -1.</_>
- <_>
- 16 3 1 1 2.</_>
- <_>
- 15 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7752740425057709e-004</threshold>
- <left_val>0.0875405818223953</left_val>
- <right_val>-0.0997709035873413</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 2 2 -1.</_>
- <_>
- 5 3 1 1 2.</_>
- <_>
- 6 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7714829239994287e-004</threshold>
- <left_val>-0.1190643012523651</left_val>
- <right_val>0.2081373035907745</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 1 -1.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.3943509333766997e-004</threshold>
- <left_val>0.1071538031101227</left_val>
- <right_val>-0.3665041029453278</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 1 2 -1.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0310331098735332</threshold>
- <left_val>-0.3991681039333344</left_val>
- <right_val>0.0811882168054581</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 3 -1.</_>
- <_>
- 10 2 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172892604023218</threshold>
- <left_val>0.3801375031471252</left_val>
- <right_val>-0.0609772987663746</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 3 -1.</_>
- <_>
- 0 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150116495788097</threshold>
- <left_val>-0.3346816897392273</left_val>
- <right_val>0.0689330995082855</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 10 1 -1.</_>
- <_>
- 12 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0645673573017120</threshold>
- <left_val>0.0653947070240974</left_val>
- <right_val>-0.4798898100852966</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 3 -1.</_>
- <_>
- 10 0 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126242898404598</threshold>
- <left_val>-0.2073639035224915</left_val>
- <right_val>0.1033783033490181</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 1 2 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0234020091593266</threshold>
- <left_val>0.0194229409098625</left_val>
- <right_val>-0.2960999011993408</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 1 -1.</_>
- <_>
- 10 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1085553020238876</threshold>
- <left_val>0.0355370081961155</left_val>
- <right_val>-0.5521429181098938</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0453203618526459</threshold>
- <left_val>0.0515648387372494</left_val>
- <right_val>-0.2503679990768433</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 4 -1.</_>
- <_>
- 0 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7765920646488667e-003</threshold>
- <left_val>-0.3630062043666840</left_val>
- <right_val>0.0604004003107548</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 16 2 -1.</_>
- <_>
- 4 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0428345203399658</threshold>
- <left_val>-0.1081646010279656</left_val>
- <right_val>0.0599687993526459</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 0 1 1 2.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7743198014795780e-003</threshold>
- <left_val>0.2150484025478363</left_val>
- <right_val>-0.0934041067957878</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119932498782873</threshold>
- <left_val>0.0175589006394148</left_val>
- <right_val>-0.7442647814750671</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5555630028247833e-003</threshold>
- <left_val>-0.3836041986942291</left_val>
- <right_val>0.0480565391480923</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 5 3 -1.</_>
- <_>
- 14 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0516617707908154</threshold>
- <left_val>-0.0405357703566551</left_val>
- <right_val>0.2797332108020783</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 4 3 -1.</_>
- <_>
- 3 1 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4890910610556602e-003</threshold>
- <left_val>0.1106553003191948</left_val>
- <right_val>-0.1824156045913696</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 9 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1782176047563553</threshold>
- <left_val>0.4667615890502930</left_val>
- <right_val>-0.0457158684730530</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 2 -1.</_>
- <_>
- 5 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398824699223042</threshold>
- <left_val>-0.3696945905685425</left_val>
- <right_val>0.0662794336676598</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 2 2 -1.</_>
- <_>
- 20 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6848186329007149e-003</threshold>
- <left_val>-0.0908453017473221</left_val>
- <right_val>0.2939020991325378</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 2 2 -1.</_>
- <_>
- 10 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8893903195858002e-003</threshold>
- <left_val>-0.5941507816314697</left_val>
- <right_val>0.0351584702730179</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 9 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1297979056835175</threshold>
- <left_val>-0.0639680996537209</left_val>
- <right_val>0.3166933059692383</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 1 -1.</_>
- <_>
- 11 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220919009298086</threshold>
- <left_val>-0.7357493042945862</left_val>
- <right_val>0.0347481891512871</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 2 -1.</_>
- <_>
- 12 3 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0636888667941093</threshold>
- <left_val>-0.0488447882235050</left_val>
- <right_val>0.1882255971431732</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 1 1 2.</_>
- <_>
- 3 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8462480986490846e-004</threshold>
- <left_val>0.1463415026664734</left_val>
- <right_val>-0.1243413984775543</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 2 2 -1.</_>
- <_>
- 19 1 1 1 2.</_>
- <_>
- 18 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7389163672924042e-003</threshold>
- <left_val>-0.0883570164442062</left_val>
- <right_val>0.3651317059993744</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5483584553003311e-003</threshold>
- <left_val>-0.3737513124942780</left_val>
- <right_val>0.0492428615689278</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 2 2 -1.</_>
- <_>
- 20 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8324568197131157e-003</threshold>
- <left_val>0.3051201999187470</left_val>
- <right_val>-0.0871342271566391</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 1 -1.</_>
- <_>
- 7 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0768225491046906e-003</threshold>
- <left_val>0.0540050491690636</left_val>
- <right_val>-0.3654535114765167</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 1 2 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0414760112762451</threshold>
- <left_val>-0.2639808952808380</left_val>
- <right_val>0.0364313200116158</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0179269202053547</threshold>
- <left_val>-0.2058589011430740</left_val>
- <right_val>0.0957352966070175</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 2 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0134669896215200</threshold>
- <left_val>0.0401146411895752</left_val>
- <right_val>-0.2650730013847351</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 3 1 -1.</_>
- <_>
- 6 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105214901268482</threshold>
- <left_val>0.3394441008567810</left_val>
- <right_val>-0.0627214834094048</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 2 -1.</_>
- <_>
- 16 1 1 1 2.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0459967032074928e-003</threshold>
- <left_val>-0.1115396991372109</left_val>
- <right_val>0.3655227124691010</right_val></_></_></trees>
- <stage_threshold>-1.5406730175018311</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 16 2 -1.</_>
- <_>
- 6 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2921968996524811</threshold>
- <left_val>-0.3051744103431702</left_val>
- <right_val>0.3110071122646332</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 2 -1.</_>
- <_>
- 10 0 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0488845296204090</threshold>
- <left_val>-0.4317635893821716</left_val>
- <right_val>0.0909197032451630</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0861048474907875</threshold>
- <left_val>0.2350410073995590</left_val>
- <right_val>-0.2458875030279160</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 9 1 -1.</_>
- <_>
- 14 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0378247499465942</threshold>
- <left_val>0.1186527982354164</left_val>
- <right_val>-0.1602728068828583</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 4 1 -1.</_>
- <_>
- 10 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1638111472129822e-003</threshold>
- <left_val>-0.3087972998619080</left_val>
- <right_val>0.1692786067724228</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 5 4 -1.</_>
- <_>
- 13 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1060808971524239</threshold>
- <left_val>-0.3249335885047913</left_val>
- <right_val>0.2009779959917069</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 9 1 -1.</_>
- <_>
- 5 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177585501223803</threshold>
- <left_val>0.1128119006752968</left_val>
- <right_val>-0.3532074093818665</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 4 -1.</_>
- <_>
- 13 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0493416897952557</threshold>
- <left_val>0.1454734057188034</left_val>
- <right_val>-0.2653774917125702</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 6 2 5 1 2.</_>
- <_>
- 11 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259109698235989</threshold>
- <left_val>0.1229083985090256</left_val>
- <right_val>-0.4127517044544220</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 3 2 -1.</_>
- <_>
- 19 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6900721974670887e-003</threshold>
- <left_val>-0.4184210896492004</left_val>
- <right_val>0.0988551601767540</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 5 3 -1.</_>
- <_>
- 2 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1002437993884087</threshold>
- <left_val>0.3868139982223511</left_val>
- <right_val>-0.0955260768532753</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 1 2 -1.</_>
- <_>
- 20 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0592489454429597e-004</threshold>
- <left_val>0.1086150035262108</left_val>
- <right_val>-0.1146064028143883</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 1 2 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4438640684820712e-004</threshold>
- <left_val>0.1391827017068863</left_val>
- <right_val>-0.2279980033636093</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 2 2 -1.</_>
- <_>
- 18 1 1 1 2.</_>
- <_>
- 17 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2062960488256067e-004</threshold>
- <left_val>0.2056594938039780</left_val>
- <right_val>-0.2767710089683533</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 5 -1.</_>
- <_>
- 11 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0959741026163101</threshold>
- <left_val>0.3078581094741821</left_val>
- <right_val>-0.1182383000850678</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 6 3 -1.</_>
- <_>
- 9 2 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1543993055820465</threshold>
- <left_val>0.4471242129802704</left_val>
- <right_val>-0.0175462197512388</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 4 2 -1.</_>
- <_>
- 10 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0623852089047432</threshold>
- <left_val>-0.1276288032531738</left_val>
- <right_val>0.2665241956710815</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 1 4 -1.</_>
- <_>
- 21 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216632205992937</threshold>
- <left_val>-0.5511227250099182</left_val>
- <right_val>0.0785660073161125</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 20 1 -1.</_>
- <_>
- 6 2 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2421177029609680</threshold>
- <left_val>-0.0816057026386261</left_val>
- <right_val>0.4142647981643677</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 1 -1.</_>
- <_>
- 20 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0434077084064484</threshold>
- <left_val>0.0290277097374201</left_val>
- <right_val>-0.6575114727020264</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 2 -1.</_>
- <_>
- 3 1 1 1 2.</_>
- <_>
- 4 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5835740962065756e-004</threshold>
- <left_val>0.1479489952325821</left_val>
- <right_val>-0.1816845983266830</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 4 2 -1.</_>
- <_>
- 18 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205316301435232</threshold>
- <left_val>-0.3038592934608460</left_val>
- <right_val>0.0581487491726875</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 2 -1.</_>
- <_>
- 6 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0351201295852661</threshold>
- <left_val>-0.7728464007377625</left_val>
- <right_val>0.0335446707904339</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 21 3 -1.</_>
- <_>
- 8 2 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9051967263221741</threshold>
- <left_val>0.0589515194296837</left_val>
- <right_val>-0.4095562100410461</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 2 -1.</_>
- <_>
- 7 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291394107043743</threshold>
- <left_val>-0.4947493970394135</left_val>
- <right_val>0.0490220896899700</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 3 1 -1.</_>
- <_>
- 14 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9205689728260040e-003</threshold>
- <left_val>0.1703335940837860</left_val>
- <right_val>-0.1276351064443588</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 1 2.</_>
- <_>
- 11 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8206740543246269e-003</threshold>
- <left_val>-0.4427204132080078</left_val>
- <right_val>0.0647476464509964</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 3 2 -1.</_>
- <_>
- 19 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119166104122996</threshold>
- <left_val>-0.4208048880100250</left_val>
- <right_val>0.0145897697657347</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 2 -1.</_>
- <_>
- 0 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149108795449138</threshold>
- <left_val>-0.2619223892688751</left_val>
- <right_val>0.0987395420670509</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 3 1 -1.</_>
- <_>
- 14 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0396954789757729</threshold>
- <left_val>-0.5716304779052734</left_val>
- <right_val>0.0150962797924876</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 3 1 -1.</_>
- <_>
- 7 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1801660477649420e-004</threshold>
- <left_val>0.1283320039510727</left_val>
- <right_val>-0.2162196040153503</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0458851009607315</threshold>
- <left_val>-0.5830789208412170</left_val>
- <right_val>0.0230850204825401</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0376097708940506</threshold>
- <left_val>-0.4769774973392487</left_val>
- <right_val>0.0497832708060741</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 2 2 -1.</_>
- <_>
- 20 1 1 1 2.</_>
- <_>
- 19 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9078450798988342e-003</threshold>
- <left_val>0.2802506983280182</left_val>
- <right_val>-0.0805409103631973</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 4 2 -1.</_>
- <_>
- 2 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0398138388991356</threshold>
- <left_val>-0.0639362186193466</left_val>
- <right_val>0.4094027876853943</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 2 2 -1.</_>
- <_>
- 20 1 1 1 2.</_>
- <_>
- 19 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4679851271212101e-003</threshold>
- <left_val>-0.0683591663837433</left_val>
- <right_val>0.1852204948663712</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 2 2 -1.</_>
- <_>
- 1 1 1 1 2.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4347038753330708e-003</threshold>
- <left_val>0.2987340092658997</left_val>
- <right_val>-0.0968659073114395</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 2 -1.</_>
- <_>
- 12 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6862850063480437e-004</threshold>
- <left_val>0.0885278210043907</left_val>
- <right_val>-0.1421532034873962</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 1 -1.</_>
- <_>
- 5 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165531896054745</threshold>
- <left_val>-0.4923925995826721</left_val>
- <right_val>0.0490056388080120</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 2 -1.</_>
- <_>
- 13 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0924725681543350</threshold>
- <left_val>0.0338660590350628</left_val>
- <right_val>-0.4127385914325714</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257745198905468</threshold>
- <left_val>-0.2287130951881409</left_val>
- <right_val>0.1235911995172501</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 16 4 -1.</_>
- <_>
- 11 0 8 2 2.</_>
- <_>
- 3 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2750909924507141</threshold>
- <left_val>-0.6749944090843201</left_val>
- <right_val>0.0343307591974735</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 4 -1.</_>
- <_>
- 0 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0719025880098343</threshold>
- <left_val>0.0419560708105564</left_val>
- <right_val>-0.4763529002666473</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 4 2 -1.</_>
- <_>
- 18 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311908591538668</threshold>
- <left_val>0.0272666793316603</left_val>
- <right_val>-0.3000186085700989</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 2 -1.</_>
- <_>
- 2 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178631804883480</threshold>
- <left_val>-0.3733784854412079</left_val>
- <right_val>0.0616636909544468</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 16 2 -1.</_>
- <_>
- 10 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1511456966400147</threshold>
- <left_val>0.0517917387187481</left_val>
- <right_val>-0.2188622951507568</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 2 -1.</_>
- <_>
- 4 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2179343998432159</threshold>
- <left_val>0.0610164590179920</left_val>
- <right_val>-0.4177503883838654</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112180197611451</threshold>
- <left_val>0.0348128601908684</left_val>
- <right_val>-0.5263618230819702</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 11 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1888345927000046</threshold>
- <left_val>0.5200440883636475</left_val>
- <right_val>-0.0430313684046268</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141079900786281</threshold>
- <left_val>-0.6106898188591003</left_val>
- <right_val>0.0400286093354225</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 2 -1.</_>
- <_>
- 7 0 4 1 2.</_>
- <_>
- 11 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180448405444622</threshold>
- <left_val>-0.2631984055042267</left_val>
- <right_val>0.0730124115943909</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 2 2 -1.</_>
- <_>
- 19 1 1 1 2.</_>
- <_>
- 18 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5544890239834785e-003</threshold>
- <left_val>-0.0854290127754211</left_val>
- <right_val>0.2241147011518478</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 1 -1.</_>
- <_>
- 4 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123116597533226</threshold>
- <left_val>-0.4429729878902435</left_val>
- <right_val>0.0466542616486549</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 2 2 -1.</_>
- <_>
- 19 1 1 1 2.</_>
- <_>
- 18 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6358742080628872e-003</threshold>
- <left_val>0.1996064037084580</left_val>
- <right_val>-0.0522281304001808</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192709192633629</threshold>
- <left_val>-0.7685980796813965</left_val>
- <right_val>0.0243509095162153</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 1 -1.</_>
- <_>
- 10 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6641881391406059e-003</threshold>
- <left_val>-0.1346967071294785</left_val>
- <right_val>0.1324453949928284</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 2 2 -1.</_>
- <_>
- 2 1 1 1 2.</_>
- <_>
- 3 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120201902464032</threshold>
- <left_val>0.3553862869739533</left_val>
- <right_val>-0.0525580197572708</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 2 -1.</_>
- <_>
- 12 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220797900110483</threshold>
- <left_val>-0.6754226088523865</left_val>
- <right_val>0.0124195404350758</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 2 -1.</_>
- <_>
- 9 3 1 1 2.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0078861163929105e-004</threshold>
- <left_val>0.1227649971842766</left_val>
- <right_val>-0.1749749928712845</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 4 4 -1.</_>
- <_>
- 12 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0373087115585804</threshold>
- <left_val>0.1854808926582336</left_val>
- <right_val>-0.0979751124978065</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 3 -1.</_>
- <_>
- 10 1 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0459991209208965</threshold>
- <left_val>0.1143648996949196</left_val>
- <right_val>-0.2461473047733307</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 4 4 -1.</_>
- <_>
- 12 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0822245106101036</threshold>
- <left_val>-0.0241080205887556</left_val>
- <right_val>0.2690033018589020</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 4 -1.</_>
- <_>
- 8 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0818987190723419</threshold>
- <left_val>-0.0396540313959122</left_val>
- <right_val>0.5047857761383057</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 20 2 -1.</_>
- <_>
- 6 1 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4614373147487640</threshold>
- <left_val>-0.0442391782999039</left_val>
- <right_val>0.4122915863990784</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 1 2.</_>
- <_>
- 10 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5755251408554614e-004</threshold>
- <left_val>-0.1778572052717209</left_val>
- <right_val>0.1205023005604744</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 2 -1.</_>
- <_>
- 12 0 3 1 2.</_>
- <_>
- 9 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156651996076107</threshold>
- <left_val>-0.0485711507499218</left_val>
- <right_val>0.0815467536449432</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 2 -1.</_>
- <_>
- 7 0 3 1 2.</_>
- <_>
- 10 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0498800091445446</threshold>
- <left_val>0.0421518981456757</left_val>
- <right_val>-0.5303056836128235</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 2 2 -1.</_>
- <_>
- 20 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7810079045593739e-003</threshold>
- <left_val>0.1198678985238075</left_val>
- <right_val>-0.1906044930219650</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 1 -1.</_>
- <_>
- 4 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176007691770792</threshold>
- <left_val>0.1897035986185074</left_val>
- <right_val>-0.0889791026711464</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 1 -1.</_>
- <_>
- 10 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0103738903999329e-003</threshold>
- <left_val>-0.3168081939220429</left_val>
- <right_val>0.0617063082754612</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 1 2 -1.</_>
- <_>
- 3 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5831652134656906e-003</threshold>
- <left_val>-0.2072229981422424</left_val>
- <right_val>0.0893940627574921</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 6 4 -1.</_>
- <_>
- 19 1 3 2 2.</_>
- <_>
- 16 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101343700662255</threshold>
- <left_val>-0.0700401812791824</left_val>
- <right_val>0.0486948713660240</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 4 -1.</_>
- <_>
- 0 1 3 2 2.</_>
- <_>
- 3 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1701169013977051</threshold>
- <left_val>0.0258664395660162</left_val>
- <right_val>-0.7274320125579834</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 1 -1.</_>
- <_>
- 20 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128320399671793</threshold>
- <left_val>-0.0323757715523243</left_val>
- <right_val>0.2820742130279541</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 1 -1.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1063549502287060e-004</threshold>
- <left_val>0.0980736389756203</left_val>
- <right_val>-0.1779716014862061</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157455801963806</threshold>
- <left_val>-0.3981826007366180</left_val>
- <right_val>0.0212849508970976</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 4 -1.</_>
- <_>
- 0 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0530990995466709</threshold>
- <left_val>0.0473971702158451</left_val>
- <right_val>-0.3579272925853729</right_val></_></_></trees>
- <stage_threshold>-1.5132089853286743</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 1 3 -1.</_>
- <_>
- 1 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126078296452761</threshold>
- <left_val>0.3289293050765991</left_val>
- <right_val>-0.2871732115745544</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 10 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0697642564773560</threshold>
- <left_val>-0.2145617008209229</left_val>
- <right_val>0.2685098946094513</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417437888681889</threshold>
- <left_val>0.1513637006282806</left_val>
- <right_val>-0.3876473903656006</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 2 -1.</_>
- <_>
- 9 0 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1030343025922775</threshold>
- <left_val>-0.2848167121410370</left_val>
- <right_val>0.1298658996820450</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 16 1 -1.</_>
- <_>
- 11 0 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0966407731175423</threshold>
- <left_val>-0.5245664715766907</left_val>
- <right_val>0.1095390990376473</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.0958474427461624e-003</threshold>
- <left_val>0.0513810887932777</left_val>
- <right_val>-0.2667458057403565</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2447129595093429e-004</threshold>
- <left_val>0.2091910988092423</left_val>
- <right_val>-0.2435808926820755</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 5 4 -1.</_>
- <_>
- 13 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1241464987397194</threshold>
- <left_val>-0.3006137907505035</left_val>
- <right_val>0.1572912931442261</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0473679304122925</threshold>
- <left_val>-0.0841763168573380</left_val>
- <right_val>0.4142656028270721</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 4 2 -1.</_>
- <_>
- 20 0 2 1 2.</_>
- <_>
- 18 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0196097102016211</threshold>
- <left_val>0.3417541086673737</left_val>
- <right_val>-0.1607497930526733</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 6 2 5 1 2.</_>
- <_>
- 11 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0348290093243122</threshold>
- <left_val>0.0755929425358772</left_val>
- <right_val>-0.4508461058139801</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 8 3 -1.</_>
- <_>
- 8 2 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3101227879524231</threshold>
- <left_val>-0.0391340292990208</left_val>
- <right_val>0.1443621963262558</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2924937009811401</threshold>
- <left_val>-0.0642258077859879</left_val>
- <right_val>0.4353322982788086</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 1 3 -1.</_>
- <_>
- 18 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231145899742842</threshold>
- <left_val>0.3070923089981079</left_val>
- <right_val>-0.0890118405222893</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 1 -1.</_>
- <_>
- 10 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7578460867516696e-004</threshold>
- <left_val>-0.3070184886455536</left_val>
- <right_val>0.0938344672322273</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 1 4 -1.</_>
- <_>
- 21 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0455872192978859</threshold>
- <left_val>0.0382352918386459</left_val>
- <right_val>-0.3347797989845276</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240571107715368</threshold>
- <left_val>-0.4457365870475769</left_val>
- <right_val>0.0670702308416367</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 1 3 -1.</_>
- <_>
- 18 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0136166596785188</threshold>
- <left_val>-0.0614804998040199</left_val>
- <right_val>0.4214267134666443</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229929592460394</threshold>
- <left_val>0.3661642074584961</left_val>
- <right_val>-0.0872418433427811</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1258576959371567</threshold>
- <left_val>0.0371632091701031</left_val>
- <right_val>-0.3560774028301239</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 4 -1.</_>
- <_>
- 0 1 4 2 2.</_>
- <_>
- 4 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0815337896347046</threshold>
- <left_val>-0.4698711931705475</left_val>
- <right_val>0.0610106214880943</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 2 2 -1.</_>
- <_>
- 19 3 1 1 2.</_>
- <_>
- 18 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4753381148912013e-004</threshold>
- <left_val>0.1936306953430176</left_val>
- <right_val>-0.1816868036985397</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 1 -1.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6028539286926389e-004</threshold>
- <left_val>0.0846851170063019</left_val>
- <right_val>-0.3284845948219299</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 4 2 1 -1.</_>
- <_>
- 19 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2039060422684997e-004</threshold>
- <left_val>0.1229088008403778</left_val>
- <right_val>-0.1549490988254547</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 1 -1.</_>
- <_>
- 9 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1960303038358688</threshold>
- <left_val>0.0581260509788990</left_val>
- <right_val>-0.4562155008316040</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 16 4 -1.</_>
- <_>
- 11 0 8 2 2.</_>
- <_>
- 3 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1407869011163712</threshold>
- <left_val>0.0446753203868866</left_val>
- <right_val>-0.5619760155677795</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 1 -1.</_>
- <_>
- 6 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2961759532336146e-004</threshold>
- <left_val>0.1191250979900360</left_val>
- <right_val>-0.2160618007183075</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 2 -1.</_>
- <_>
- 15 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195333305746317</threshold>
- <left_val>-0.3905149102210999</left_val>
- <right_val>0.0701041594147682</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 2 -1.</_>
- <_>
- 5 1 1 1 2.</_>
- <_>
- 6 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138731095939875</threshold>
- <left_val>-0.0724452435970306</left_val>
- <right_val>0.3774791061878204</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 2 -1.</_>
- <_>
- 15 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2634480663109571e-004</threshold>
- <left_val>0.0957862436771393</left_val>
- <right_val>-0.1260748058557510</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 2 -1.</_>
- <_>
- 6 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241786092519760</threshold>
- <left_val>-0.5329800844192505</left_val>
- <right_val>0.0503096207976341</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 1 -1.</_>
- <_>
- 16 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145593099296093</threshold>
- <left_val>0.3904046118259430</left_val>
- <right_val>-0.1187724992632866</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 3 1 -1.</_>
- <_>
- 6 3 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2580049699172378e-004</threshold>
- <left_val>0.1951259970664978</left_val>
- <right_val>-0.1484954059123993</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 21 3 -1.</_>
- <_>
- 8 2 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2149316072463989</threshold>
- <left_val>-0.6001014709472656</left_val>
- <right_val>0.0291111394762993</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128397000953555</threshold>
- <left_val>0.3157683014869690</left_val>
- <right_val>-0.0720015019178391</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 1 3 -1.</_>
- <_>
- 19 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198789108544588</threshold>
- <left_val>0.3225157856941223</left_val>
- <right_val>-0.1353725939989090</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 1 3 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100354896858335</threshold>
- <left_val>-0.0568225607275963</left_val>
- <right_val>0.4656737148761749</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 8 2 -1.</_>
- <_>
- 11 1 4 1 2.</_>
- <_>
- 7 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376236811280251</threshold>
- <left_val>-0.4267737865447998</left_val>
- <right_val>0.0648194700479507</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 9 1 1 1 2.</_>
- <_>
- 10 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1324769729981199e-004</threshold>
- <left_val>-0.1595813930034638</left_val>
- <right_val>0.1477826982736588</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 3 3 -1.</_>
- <_>
- 12 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0379783287644386</threshold>
- <left_val>-0.0659075826406479</left_val>
- <right_val>0.4012987911701202</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 3 4 -1.</_>
- <_>
- 9 1 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394397787749767</threshold>
- <left_val>-0.0845254808664322</left_val>
- <right_val>0.3566597998142242</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9516127482056618e-003</threshold>
- <left_val>-0.4334160983562470</left_val>
- <right_val>0.0619834288954735</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3888713270425797e-003</threshold>
- <left_val>0.0468572117388248</left_val>
- <right_val>-0.4738920032978058</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 1 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4398089200258255e-003</threshold>
- <left_val>0.0421781986951828</left_val>
- <right_val>-0.5143380761146545</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107923196628690</threshold>
- <left_val>-0.5802994966506958</left_val>
- <right_val>0.0322903692722321</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 2 -1.</_>
- <_>
- 11 3 3 1 2.</_>
- <_>
- 8 4 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174952093511820</threshold>
- <left_val>-0.3053542971611023</left_val>
- <right_val>0.0629183128476143</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 2 -1.</_>
- <_>
- 4 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205707103013992</threshold>
- <left_val>0.1825321018695831</left_val>
- <right_val>-0.1210422962903976</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 2 2 -1.</_>
- <_>
- 14 3 1 1 2.</_>
- <_>
- 13 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1084279685746878e-004</threshold>
- <left_val>0.1000263988971710</left_val>
- <right_val>-0.1450241953134537</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 4 2 -1.</_>
- <_>
- 9 3 2 1 2.</_>
- <_>
- 11 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111437896266580</threshold>
- <left_val>-0.3472850024700165</left_val>
- <right_val>0.0650748834013939</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 2 -1.</_>
- <_>
- 16 2 1 1 2.</_>
- <_>
- 15 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1553200036287308e-003</threshold>
- <left_val>0.3398604989051819</left_val>
- <right_val>-0.1354638040065765</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 2 1 -1.</_>
- <_>
- 2 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1860719425603747e-004</threshold>
- <left_val>0.1421895027160645</left_val>
- <right_val>-0.1600103974342346</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 3 -1.</_>
- <_>
- 9 1 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0871755927801132</threshold>
- <left_val>0.3080326914787293</left_val>
- <right_val>-0.0751926526427269</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 1 -1.</_>
- <_>
- 8 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0780207216739655</threshold>
- <left_val>-0.0983691290020943</left_val>
- <right_val>0.2524915933609009</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8408560319803655e-004</threshold>
- <left_val>-0.3871381878852844</left_val>
- <right_val>0.0476101711392403</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 1 -1.</_>
- <_>
- 8 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120724802836776</threshold>
- <left_val>0.2123920023441315</left_val>
- <right_val>-0.1005887016654015</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0993544980883598</threshold>
- <left_val>0.0249169804155827</left_val>
- <right_val>-0.5672984719276428</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 2 -1.</_>
- <_>
- 0 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9157710485160351e-003</threshold>
- <left_val>-0.5084031224250794</left_val>
- <right_val>0.0410367809236050</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2407809845171869e-004</threshold>
- <left_val>0.0786713063716888</left_val>
- <right_val>-0.1326536983251572</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 5 4 -1.</_>
- <_>
- 4 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0522460602223873</threshold>
- <left_val>0.1149192005395889</left_val>
- <right_val>-0.1770702004432678</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 2 -1.</_>
- <_>
- 16 2 1 1 2.</_>
- <_>
- 15 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8520159937907010e-004</threshold>
- <left_val>0.0747666209936142</left_val>
- <right_val>-0.1286102980375290</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 2 2 -1.</_>
- <_>
- 5 2 1 1 2.</_>
- <_>
- 6 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124963195994496</threshold>
- <left_val>-0.0372684299945831</left_val>
- <right_val>0.5833895206451416</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 1 -1.</_>
- <_>
- 14 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207027494907379</threshold>
- <left_val>-0.4583578109741211</left_val>
- <right_val>0.0298828296363354</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 1 -1.</_>
- <_>
- 7 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0285720054525882e-004</threshold>
- <left_val>0.1169814020395279</left_val>
- <right_val>-0.1779796034097672</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 2 -1.</_>
- <_>
- 16 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292956698685884</threshold>
- <left_val>-0.4759201109409332</left_val>
- <right_val>0.0553959012031555</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 2 -1.</_>
- <_>
- 5 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6850448921322823e-003</threshold>
- <left_val>0.0954134166240692</left_val>
- <right_val>-0.2369711995124817</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 5 4 -1.</_>
- <_>
- 15 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3639847934246063</threshold>
- <left_val>0.0247668605297804</left_val>
- <right_val>-0.7378187179565430</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 3 -1.</_>
- <_>
- 4 2 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0348225310444832</threshold>
- <left_val>-0.0371499098837376</left_val>
- <right_val>0.5801017284393311</right_val></_></_></trees>
- <stage_threshold>-1.5654580593109131</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 2 -1.</_>
- <_>
- 0 1 1 1 2.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6602258011698723e-003</threshold>
- <left_val>0.3104394078254700</left_val>
- <right_val>-0.1914138048887253</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 2 -1.</_>
- <_>
- 10 0 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0880320072174072</threshold>
- <left_val>-0.2895796000957489</left_val>
- <right_val>0.1216154992580414</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 1 -1.</_>
- <_>
- 4 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2375640049576759e-003</threshold>
- <left_val>0.1945987045764923</left_val>
- <right_val>-0.2775964140892029</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 14 2 -1.</_>
- <_>
- 6 1 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4101809859275818</threshold>
- <left_val>0.0545456595718861</left_val>
- <right_val>-0.6932289004325867</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 1 -1.</_>
- <_>
- 2 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9229446128010750e-003</threshold>
- <left_val>0.1306308060884476</left_val>
- <right_val>-0.3845525979995728</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0787577778100967</threshold>
- <left_val>-0.1861117035150528</left_val>
- <right_val>0.1028727963566780</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 2 -1.</_>
- <_>
- 10 1 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1022275015711784</threshold>
- <left_val>-0.2970561087131500</left_val>
- <right_val>0.1501674950122833</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 22 2 -1.</_>
- <_>
- 11 0 11 1 2.</_>
- <_>
- 0 1 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0644519180059433</threshold>
- <left_val>-0.4134370088577271</left_val>
- <right_val>0.1080941036343575</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 3 -1.</_>
- <_>
- 2 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0368057303130627</threshold>
- <left_val>0.3684262037277222</left_val>
- <right_val>-0.1141026020050049</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 1 3 -1.</_>
- <_>
- 18 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293698497116566</threshold>
- <left_val>0.3276480138301849</left_val>
- <right_val>-0.0802641063928604</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7123891785740852e-003</threshold>
- <left_val>0.0882864221930504</left_val>
- <right_val>-0.4445902109146118</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1538141071796417</threshold>
- <left_val>-0.4562157094478607</left_val>
- <right_val>0.0180936008691788</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 8 2 -1.</_>
- <_>
- 7 3 4 1 2.</_>
- <_>
- 11 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0253893695771694</threshold>
- <left_val>-0.4690324962139130</left_val>
- <right_val>0.0615506581962109</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0298910997807980</threshold>
- <left_val>-0.2820520997047424</left_val>
- <right_val>0.0278933197259903</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3889240401331335e-004</threshold>
- <left_val>0.0866776108741760</left_val>
- <right_val>-0.3572528958320618</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0967053025960922</threshold>
- <left_val>0.0334066599607468</left_val>
- <right_val>-0.2078382968902588</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 2 -1.</_>
- <_>
- 5 1 1 1 2.</_>
- <_>
- 6 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1295214369893074e-003</threshold>
- <left_val>-0.0991728901863098</left_val>
- <right_val>0.3085930943489075</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2934893071651459</threshold>
- <left_val>8.1442613154649734e-003</left_val>
- <right_val>-0.5095192193984985</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 10 4 -1.</_>
- <_>
- 6 0 5 2 2.</_>
- <_>
- 11 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0832473635673523</threshold>
- <left_val>-0.4849885106086731</left_val>
- <right_val>0.0608736611902714</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 6 5 -1.</_>
- <_>
- 18 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0835273936390877</threshold>
- <left_val>-0.1033390015363693</left_val>
- <right_val>0.0158715695142746</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 5 -1.</_>
- <_>
- 2 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1202830001711845</threshold>
- <left_val>-0.4354028999805450</left_val>
- <right_val>0.0633132308721542</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 16 2 -1.</_>
- <_>
- 9 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3353897035121918</threshold>
- <left_val>0.0139546301215887</left_val>
- <right_val>-0.4423910081386566</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 10 3 -1.</_>
- <_>
- 6 2 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164324194192886</threshold>
- <left_val>-0.4260169863700867</left_val>
- <right_val>0.0586070418357849</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 2 -1.</_>
- <_>
- 16 3 1 1 2.</_>
- <_>
- 15 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9124349637422711e-004</threshold>
- <left_val>0.0605542287230492</left_val>
- <right_val>-0.0775830224156380</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 2 2 -1.</_>
- <_>
- 5 3 1 1 2.</_>
- <_>
- 6 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3965220316313207e-004</threshold>
- <left_val>-0.1283147037029266</left_val>
- <right_val>0.2045322954654694</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 8 4 -1.</_>
- <_>
- 18 1 4 2 2.</_>
- <_>
- 14 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1410280019044876</threshold>
- <left_val>0.0425505004823208</left_val>
- <right_val>-0.5261893272399902</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 4 -1.</_>
- <_>
- 3 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160464998334646</threshold>
- <left_val>-0.2466184049844742</left_val>
- <right_val>0.0813784524798393</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 4 -1.</_>
- <_>
- 21 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0531627796590328</threshold>
- <left_val>0.0352040007710457</left_val>
- <right_val>-0.2831040918827057</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 22 2 -1.</_>
- <_>
- 0 2 11 1 2.</_>
- <_>
- 11 3 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417232587933540</threshold>
- <left_val>-0.2983017861843109</left_val>
- <right_val>0.0801239535212517</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 3 -1.</_>
- <_>
- 17 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0553928017616272</threshold>
- <left_val>0.2219153046607971</left_val>
- <right_val>-0.0897308215498924</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 3 -1.</_>
- <_>
- 2 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179573707282543</threshold>
- <left_val>-0.0925520732998848</left_val>
- <right_val>0.2500694096088409</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 12 5 -1.</_>
- <_>
- 13 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4046837985515595</threshold>
- <left_val>0.1823135018348694</left_val>
- <right_val>-0.1142465025186539</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 3 -1.</_>
- <_>
- 11 2 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1204074025154114</threshold>
- <left_val>0.4014413058757782</left_val>
- <right_val>-0.0497754290699959</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 4 1 -1.</_>
- <_>
- 11 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1274770051240921</threshold>
- <left_val>0.0286344606429338</left_val>
- <right_val>-0.3693166971206665</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 2 -1.</_>
- <_>
- 9 3 1 1 2.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1081299928482622e-004</threshold>
- <left_val>0.1089978963136673</left_val>
- <right_val>-0.1835806071758270</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 16 0 2 1 2.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202662907540798</threshold>
- <left_val>-0.1147174015641213</left_val>
- <right_val>0.2365763038396835</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 20 2 -1.</_>
- <_>
- 0 3 10 1 2.</_>
- <_>
- 10 4 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0938578322529793</threshold>
- <left_val>-0.4446719884872437</left_val>
- <right_val>0.0463233590126038</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 9 2 -1.</_>
- <_>
- 16 1 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0390890501439571</threshold>
- <left_val>0.0900571793317795</left_val>
- <right_val>-0.2432890981435776</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 1 -1.</_>
- <_>
- 10 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116938799619675</threshold>
- <left_val>-0.1343414038419724</left_val>
- <right_val>0.1559841930866242</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 2 -1.</_>
- <_>
- 12 2 1 1 2.</_>
- <_>
- 11 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3392560251522809e-004</threshold>
- <left_val>0.1066009029746056</left_val>
- <right_val>-0.1503113955259323</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 2 2 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0766542404890060</threshold>
- <left_val>0.0466307103633881</left_val>
- <right_val>-0.4484651982784271</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6552842035889626e-003</threshold>
- <left_val>0.2990885972976685</left_val>
- <right_val>-0.1449618041515350</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 1 -1.</_>
- <_>
- 6 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4779841341078281e-003</threshold>
- <left_val>0.0570152290165424</left_val>
- <right_val>-0.3590728938579559</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 1 -1.</_>
- <_>
- 8 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0777626633644104</threshold>
- <left_val>0.5025200247764587</left_val>
- <right_val>-0.0435283817350864</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 22 1 -1.</_>
- <_>
- 11 4 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1397587060928345</threshold>
- <left_val>0.3465459942817688</left_val>
- <right_val>-0.0520052611827850</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 1 -1.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127599202096462</threshold>
- <left_val>-0.6659132242202759</left_val>
- <right_val>0.0209838803857565</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 2 1 -1.</_>
- <_>
- 5 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113625200465322</threshold>
- <left_val>0.0222821906208992</left_val>
- <right_val>-0.6685109138488770</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 6 3 -1.</_>
- <_>
- 17 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2231232970952988</threshold>
- <left_val>-0.4610581099987030</left_val>
- <right_val>6.2970318831503391e-003</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 2 -1.</_>
- <_>
- 6 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2931410057935864e-004</threshold>
- <left_val>-0.2111182063817978</left_val>
- <right_val>0.0817711725831032</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 4 -1.</_>
- <_>
- 10 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0602262616157532</threshold>
- <left_val>0.3254680931568146</left_val>
- <right_val>-0.0216824002563953</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0173239065334201e-004</threshold>
- <left_val>-0.3232026994228363</left_val>
- <right_val>0.0708208531141281</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6154008810408413e-004</threshold>
- <left_val>0.0682233572006226</left_val>
- <right_val>-0.1024259030818939</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4847848154604435e-003</threshold>
- <left_val>0.2240424007177353</left_val>
- <right_val>-0.0811881870031357</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185171104967594</threshold>
- <left_val>-0.5528036952018738</left_val>
- <right_val>0.0357043296098709</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 3 -1.</_>
- <_>
- 10 2 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0813487470149994</threshold>
- <left_val>-0.0777567028999329</left_val>
- <right_val>0.2396816015243530</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 20 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1357801053673029e-003</threshold>
- <left_val>-0.3550890982151032</left_val>
- <right_val>0.0334104485809803</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 1 -1.</_>
- <_>
- 5 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6459500077180564e-004</threshold>
- <left_val>0.1039851978421211</left_val>
- <right_val>-0.1549458950757980</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 3 1 -1.</_>
- <_>
- 19 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7518890611827374e-003</threshold>
- <left_val>0.3072158992290497</left_val>
- <right_val>-0.1471019983291626</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 1 2 -1.</_>
- <_>
- 0 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8430210184305906e-003</threshold>
- <left_val>-0.3927483856678009</left_val>
- <right_val>0.0468359701335430</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 3 2 2 -1.</_>
- <_>
- 21 3 1 1 2.</_>
- <_>
- 20 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1122969337739050e-004</threshold>
- <left_val>-0.2182451039552689</left_val>
- <right_val>0.1224329024553299</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 3 1 1 2.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2105030075181276e-004</threshold>
- <left_val>-0.1839634031057358</left_val>
- <right_val>0.0894107371568680</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 12 2 -1.</_>
- <_>
- 13 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1596564948558807</threshold>
- <left_val>0.0961632728576660</left_val>
- <right_val>-0.0851516798138618</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0300882197916508</threshold>
- <left_val>-0.0395904183387756</left_val>
- <right_val>0.4714989960193634</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 3 1 -1.</_>
- <_>
- 20 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0294209979474545e-003</threshold>
- <left_val>0.1985325068235397</left_val>
- <right_val>-0.1036683991551399</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 3 1 -1.</_>
- <_>
- 1 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125349396839738</threshold>
- <left_val>-0.0465150997042656</left_val>
- <right_val>0.3729344904422760</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 1 -1.</_>
- <_>
- 20 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0249549709260464</threshold>
- <left_val>0.0378106608986855</left_val>
- <right_val>-0.2126975953578949</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 18 3 -1.</_>
- <_>
- 8 1 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9914733767509460</threshold>
- <left_val>0.0404802709817886</left_val>
- <right_val>-0.4234201908111572</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 2 -1.</_>
- <_>
- 14 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2983271889388561e-003</threshold>
- <left_val>0.0872289612889290</left_val>
- <right_val>-0.2782127857208252</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 20 1 -1.</_>
- <_>
- 6 2 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1936049014329910</threshold>
- <left_val>-0.0953638702630997</left_val>
- <right_val>0.1918828040361404</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 1 -1.</_>
- <_>
- 20 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0765724927186966</threshold>
- <left_val>0.6624032855033875</left_val>
- <right_val>-4.9499049782752991e-003</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 3 2 -1.</_>
- <_>
- 9 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288803391158581</threshold>
- <left_val>-0.0576803199946880</left_val>
- <right_val>0.3216530978679657</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 1 -1.</_>
- <_>
- 20 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0147415297105908</threshold>
- <left_val>-0.0864769592881203</left_val>
- <right_val>0.0324847102165222</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0218243692070246</threshold>
- <left_val>0.0573925487697124</left_val>
- <right_val>-0.3441714048385620</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 16 2 -1.</_>
- <_>
- 10 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2281226068735123</threshold>
- <left_val>-0.5248197913169861</left_val>
- <right_val>6.9780298508703709e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 2 -1.</_>
- <_>
- 4 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2811104953289032</threshold>
- <left_val>0.0243451707065105</left_val>
- <right_val>-0.6498730182647705</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 4 2 -1.</_>
- <_>
- 11 3 2 1 2.</_>
- <_>
- 9 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229572393000126</threshold>
- <left_val>-0.4581542909145355</left_val>
- <right_val>0.0302064307034016</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 4 -1.</_>
- <_>
- 10 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0603400394320488</threshold>
- <left_val>0.4640114009380341</left_val>
- <right_val>-0.0372259803116322</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 1 -1.</_>
- <_>
- 12 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0275691505521536</threshold>
- <left_val>0.0209768600761890</left_val>
- <right_val>-0.6901494860649109</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 1 -1.</_>
- <_>
- 10 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6252120733261108e-004</threshold>
- <left_val>-0.2385396957397461</left_val>
- <right_val>0.0797715634107590</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 1 -1.</_>
- <_>
- 11 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189698804169893</threshold>
- <left_val>0.0310240201652050</left_val>
- <right_val>-0.2781842947006226</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 3 -1.</_>
- <_>
- 10 0 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5228282809257507</threshold>
- <left_val>0.0171059705317020</left_val>
- <right_val>-0.7943431138992310</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 12 1 -1.</_>
- <_>
- 8 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0318946912884712</threshold>
- <left_val>0.2789232134819031</left_val>
- <right_val>-0.0540697798132896</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 2 -1.</_>
- <_>
- 7 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153362900018692</threshold>
- <left_val>0.0470543317496777</left_val>
- <right_val>-0.3611122071743012</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 3 -1.</_>
- <_>
- 10 3 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4197083115577698</threshold>
- <left_val>-0.5987181067466736</left_val>
- <right_val>0.0114638302475214</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7562819458544254e-003</threshold>
- <left_val>0.2296220064163208</left_val>
- <right_val>-0.0647229403257370</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 1 3 -1.</_>
- <_>
- 19 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8668280988931656e-003</threshold>
- <left_val>-0.0378440208733082</left_val>
- <right_val>0.3308623135089874</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 1 -1.</_>
- <_>
- 6 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0217330995947123</threshold>
- <left_val>0.1095108985900879</left_val>
- <right_val>-0.1400672048330307</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 2 -1.</_>
- <_>
- 12 0 1 1 2.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303408093750477</threshold>
- <left_val>5.3396178409457207e-003</left_val>
- <right_val>-0.6631283164024353</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 1 2.</_>
- <_>
- 10 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7025368763133883e-004</threshold>
- <left_val>-0.1567120999097824</left_val>
- <right_val>0.0986059904098511</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 5 -1.</_>
- <_>
- 10 0 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415275506675243</threshold>
- <left_val>0.2330273985862732</left_val>
- <right_val>-0.0623291209340096</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 11 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0617230087518692</threshold>
- <left_val>0.2415892928838730</left_val>
- <right_val>-0.0955918580293655</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9920018538832664e-003</threshold>
- <left_val>0.0676549896597862</left_val>
- <right_val>-0.3348307907581329</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1078263968229294</threshold>
- <left_val>-0.0366013087332249</left_val>
- <right_val>0.4491366147994995</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162226594984531</threshold>
- <left_val>0.0174882691353559</left_val>
- <right_val>-0.5831140279769898</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103788198903203</threshold>
- <left_val>-0.3565832078456879</left_val>
- <right_val>0.0370058007538319</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 2 -1.</_>
- <_>
- 21 0 1 1 2.</_>
- <_>
- 20 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4412395954132080e-003</threshold>
- <left_val>0.1430597007274628</left_val>
- <right_val>-0.0507311187684536</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 4 -1.</_>
- <_>
- 0 1 4 2 2.</_>
- <_>
- 4 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1460002958774567</threshold>
- <left_val>0.0325158499181271</left_val>
- <right_val>-0.4505861103534699</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 18 3 -1.</_>
- <_>
- 10 3 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9812418222427368</threshold>
- <left_val>4.8845731653273106e-003</left_val>
- <right_val>-0.6505978107452393</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 3 -1.</_>
- <_>
- 6 3 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3686679005622864</threshold>
- <left_val>-0.7344589829444885</left_val>
- <right_val>0.0186632201075554</right_val></_></_></trees>
- <stage_threshold>-1.5075240135192871</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 3 -1.</_>
- <_>
- 7 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0355198308825493</threshold>
- <left_val>0.1617852002382278</left_val>
- <right_val>-0.3557350933551788</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 2 2 -1.</_>
- <_>
- 12 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.1728484258055687e-003</threshold>
- <left_val>-0.1260304003953934</left_val>
- <right_val>0.1070927977561951</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 1 3 -1.</_>
- <_>
- 10 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2214298993349075</threshold>
- <left_val>-7.7310669439611956e-006</left_val>
- <right_val>-1.2306490478515625e+003</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 12 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1121281981468201</threshold>
- <left_val>9.6115162596106529e-003</left_val>
- <right_val>-0.5591316819190979</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 2 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0214573107659817</threshold>
- <left_val>-0.3396573960781097</left_val>
- <right_val>0.1660932004451752</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 4 2 -1.</_>
- <_>
- 20 0 2 1 2.</_>
- <_>
- 18 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129726100713015</threshold>
- <left_val>0.2339890003204346</left_val>
- <right_val>-0.1611067950725555</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 1 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6818781197071075e-003</threshold>
- <left_val>0.1347575038671494</left_val>
- <right_val>-0.2744300961494446</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 1 2 -1.</_>
- <_>
- 21 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5116768665611744e-004</threshold>
- <left_val>-0.2640047967433929</left_val>
- <right_val>0.1118483990430832</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 1 -1.</_>
- <_>
- 8 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1044178009033203</threshold>
- <left_val>-0.2772159874439240</left_val>
- <right_val>0.1226371973752976</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 2 1 -1.</_>
- <_>
- 17 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103076398372650</threshold>
- <left_val>0.4387269914150238</left_val>
- <right_val>-0.2257290035486221</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 5 -1.</_>
- <_>
- 1 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0657564774155617</threshold>
- <left_val>-0.5489766001701355</left_val>
- <right_val>0.0448703281581402</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 3 3 -1.</_>
- <_>
- 14 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232425201684237</threshold>
- <left_val>0.1687006950378418</left_val>
- <right_val>-0.2039787024259567</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 5 4 -1.</_>
- <_>
- 4 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0568407289683819</threshold>
- <left_val>-0.3538163900375366</left_val>
- <right_val>0.0737606585025787</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 2 2 -1.</_>
- <_>
- 19 3 1 1 2.</_>
- <_>
- 18 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8088671388104558e-004</threshold>
- <left_val>0.0847699269652367</left_val>
- <right_val>-0.0890894830226898</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 4 2 -1.</_>
- <_>
- 8 2 2 1 2.</_>
- <_>
- 10 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288917198777199</threshold>
- <left_val>-0.5387725830078125</left_val>
- <right_val>0.0481997393071651</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 2 -1.</_>
- <_>
- 15 2 1 1 2.</_>
- <_>
- 14 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8813000321388245e-003</threshold>
- <left_val>-0.1096180975437164</left_val>
- <right_val>0.2278506010770798</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 1 1 2.</_>
- <_>
- 3 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2791069932281971e-004</threshold>
- <left_val>0.1515929996967316</left_val>
- <right_val>-0.1536172926425934</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 1 -1.</_>
- <_>
- 12 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172245390713215</threshold>
- <left_val>0.0263692494481802</left_val>
- <right_val>-0.3927490115165710</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 1 -1.</_>
- <_>
- 9 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0192765109241009</threshold>
- <left_val>0.0391367189586163</left_val>
- <right_val>-0.5336027741432190</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 4 2 -1.</_>
- <_>
- 20 0 2 1 2.</_>
- <_>
- 18 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0353499799966812</threshold>
- <left_val>0.1689237952232361</left_val>
- <right_val>-0.0447259806096554</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 4 1 -1.</_>
- <_>
- 5 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4690220016054809e-004</threshold>
- <left_val>0.0976511463522911</left_val>
- <right_val>-0.2252393066883087</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3808020341675729e-004</threshold>
- <left_val>0.0918731689453125</left_val>
- <right_val>-0.2102558016777039</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 2 2 -1.</_>
- <_>
- 6 2 1 1 2.</_>
- <_>
- 7 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2629360319115222e-004</threshold>
- <left_val>-0.1301615983247757</left_val>
- <right_val>0.1746802031993866</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 3 -1.</_>
- <_>
- 17 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0685128867626190</threshold>
- <left_val>0.2233822047710419</left_val>
- <right_val>-0.2069347947835922</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 2 -1.</_>
- <_>
- 5 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229604393243790</threshold>
- <left_val>-0.4152827858924866</left_val>
- <right_val>0.0558899901807308</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 9 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1233180016279221</threshold>
- <left_val>-0.0728143826127052</left_val>
- <right_val>0.3267267048358917</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 3 -1.</_>
- <_>
- 7 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1549450010061264</threshold>
- <left_val>-0.7887173891067505</left_val>
- <right_val>0.0310064293444157</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 2 -1.</_>
- <_>
- 15 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314758606255054</threshold>
- <left_val>-0.5589601993560791</left_val>
- <right_val>0.0317612513899803</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 2 -1.</_>
- <_>
- 0 0 2 1 2.</_>
- <_>
- 2 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254820995032787</threshold>
- <left_val>0.2539067864418030</left_val>
- <right_val>-0.0870282873511314</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 2 1 -1.</_>
- <_>
- 17 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5384381297044456e-004</threshold>
- <left_val>0.0537054501473904</left_val>
- <right_val>-0.1235295012593269</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 2 -1.</_>
- <_>
- 6 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272925905883312</threshold>
- <left_val>-0.5135846734046936</left_val>
- <right_val>0.0360357984900475</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0507335886359215</threshold>
- <left_val>-0.0516890287399292</left_val>
- <right_val>0.3995021879673004</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1053168997168541</threshold>
- <left_val>0.0349466502666473</left_val>
- <right_val>-0.5719997882843018</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6800240203738213e-003</threshold>
- <left_val>0.0491173714399338</left_val>
- <right_val>-0.4794890880584717</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 2 1 -1.</_>
- <_>
- 4 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7255711029283702e-004</threshold>
- <left_val>0.0928098186850548</left_val>
- <right_val>-0.1955388933420181</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 3 1 -1.</_>
- <_>
- 18 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105343302711844</threshold>
- <left_val>-0.5163537859916687</left_val>
- <right_val>0.0396977588534355</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 1 -1.</_>
- <_>
- 8 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149531802162528</threshold>
- <left_val>0.1626240015029907</left_val>
- <right_val>-0.1271512061357498</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 16 2 -1.</_>
- <_>
- 13 1 8 1 2.</_>
- <_>
- 5 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0604328215122223</threshold>
- <left_val>0.1645521968603134</left_val>
- <right_val>-0.0379642993211746</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 1 -1.</_>
- <_>
- 3 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130542898550630</threshold>
- <left_val>-0.6074082255363464</left_val>
- <right_val>0.0316967517137527</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 14 2 -1.</_>
- <_>
- 13 1 7 1 2.</_>
- <_>
- 6 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1608176976442337</threshold>
- <left_val>-6.5205618739128113e-004</left_val>
- <right_val>-0.4585787057876587</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 14 2 -1.</_>
- <_>
- 2 1 7 1 2.</_>
- <_>
- 9 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0341188199818134</threshold>
- <left_val>-0.1164626032114029</left_val>
- <right_val>0.1578840017318726</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 4 2 -1.</_>
- <_>
- 16 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377329401671886</threshold>
- <left_val>-0.0387539491057396</left_val>
- <right_val>0.1349529027938843</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 2 -1.</_>
- <_>
- 8 1 3 1 2.</_>
- <_>
- 11 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0307118799537420</threshold>
- <left_val>0.0477422587573528</left_val>
- <right_val>-0.4303537011146545</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 4 3 -1.</_>
- <_>
- 16 2 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0379499495029449</threshold>
- <left_val>0.1175562962889671</left_val>
- <right_val>-0.1488959044218063</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 4 2 -1.</_>
- <_>
- 2 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293602906167507</threshold>
- <left_val>-0.0752530172467232</left_val>
- <right_val>0.2932392060756683</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 8 5 -1.</_>
- <_>
- 10 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2531990110874176</threshold>
- <left_val>-0.1665869951248169</left_val>
- <right_val>0.0894998088479042</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 3 -1.</_>
- <_>
- 8 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1295928955078125</threshold>
- <left_val>-0.0557844601571560</left_val>
- <right_val>0.3491880893707275</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 2 2 -1.</_>
- <_>
- 20 1 1 1 2.</_>
- <_>
- 19 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8244248181581497e-003</threshold>
- <left_val>0.2790288925170898</left_val>
- <right_val>-0.0682061314582825</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 4 -1.</_>
- <_>
- 10 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0787913799285889</threshold>
- <left_val>-0.1562068015336990</left_val>
- <right_val>0.1130442023277283</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 2 1 -1.</_>
- <_>
- 19 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0128360297530890</threshold>
- <left_val>-0.2341040968894959</left_val>
- <right_val>0.0688050165772438</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 4 -1.</_>
- <_>
- 0 0 10 2 2.</_>
- <_>
- 10 2 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0795226991176605</threshold>
- <left_val>-0.2531400918960571</left_val>
- <right_val>0.0608972907066345</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 3 4 -1.</_>
- <_>
- 19 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0396368205547333</threshold>
- <left_val>-0.2644801139831543</left_val>
- <right_val>0.0823834836483002</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 11 3 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2469912022352219</threshold>
- <left_val>0.3543556034564972</left_val>
- <right_val>-0.0668885484337807</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2949569392949343e-004</threshold>
- <left_val>0.1136023998260498</left_val>
- <right_val>-0.1477279961109161</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133122596889734</threshold>
- <left_val>0.3158606886863709</left_val>
- <right_val>-0.0559014193713665</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 1 2 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0132037801668048</threshold>
- <left_val>0.0314864404499531</left_val>
- <right_val>-0.2641296088695526</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122691998258233</threshold>
- <left_val>-0.5923423767089844</left_val>
- <right_val>0.0242486894130707</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 1 -1.</_>
- <_>
- 16 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180592201650143</threshold>
- <left_val>0.3386563062667847</left_val>
- <right_val>-0.0806968286633492</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5429509696550667e-004</threshold>
- <left_val>-0.2228489965200424</left_val>
- <right_val>0.0742115974426270</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 2 2 -1.</_>
- <_>
- 20 1 1 1 2.</_>
- <_>
- 19 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8134778887033463e-003</threshold>
- <left_val>-0.0429794192314148</left_val>
- <right_val>0.1561470925807953</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 2 2 -1.</_>
- <_>
- 1 1 1 1 2.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109792295843363</threshold>
- <left_val>0.2791073024272919</left_val>
- <right_val>-0.0565107986330986</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 2 -1.</_>
- <_>
- 21 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179905295372009</threshold>
- <left_val>-0.6046596169471741</left_val>
- <right_val>0.0311555694788694</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 2 -1.</_>
- <_>
- 0 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112548498436809</threshold>
- <left_val>0.0487176403403282</left_val>
- <right_val>-0.3375760018825531</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6132029597647488e-004</threshold>
- <left_val>0.1056291982531548</left_val>
- <right_val>-0.1343839019536972</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1210080273449421e-003</threshold>
- <left_val>-0.5522217750549316</left_val>
- <right_val>0.0265667103230953</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246724095195532</threshold>
- <left_val>9.7258696332573891e-003</left_val>
- <right_val>-0.6160507798194885</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 8 2 -1.</_>
- <_>
- 6 3 4 1 2.</_>
- <_>
- 10 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0676949620246887</threshold>
- <left_val>-0.7366021275520325</left_val>
- <right_val>0.0195282194763422</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0280081909149885</threshold>
- <left_val>-0.5081465244293213</left_val>
- <right_val>0.0101704103872180</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 3 1 -1.</_>
- <_>
- 1 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1907560341060162e-003</threshold>
- <left_val>0.1463394016027451</left_val>
- <right_val>-0.1010674014687538</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151786198839545</threshold>
- <left_val>0.2253026068210602</left_val>
- <right_val>-0.0712036490440369</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 2 4 -1.</_>
- <_>
- 11 1 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177353993058205</threshold>
- <left_val>0.1873757988214493</left_val>
- <right_val>-0.0931500867009163</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6827311376109719e-004</threshold>
- <left_val>-0.0509754493832588</left_val>
- <right_val>0.0780920535326004</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 1 -1.</_>
- <_>
- 8 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153298303484917</threshold>
- <left_val>0.0317088216543198</left_val>
- <right_val>-0.4852918982505798</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 4 2 -1.</_>
- <_>
- 19 1 2 1 2.</_>
- <_>
- 17 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8564469539560378e-004</threshold>
- <left_val>-0.0747290104627609</left_val>
- <right_val>0.0735304802656174</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 4 2 -1.</_>
- <_>
- 1 1 2 1 2.</_>
- <_>
- 3 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221204292029142</threshold>
- <left_val>0.2728720009326935</left_val>
- <right_val>-0.0640629082918167</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 2 1 -1.</_>
- <_>
- 18 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1887499315198511e-004</threshold>
- <left_val>0.0630310028791428</left_val>
- <right_val>-0.0968450531363487</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 2 1 -1.</_>
- <_>
- 3 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1083210594952106e-004</threshold>
- <left_val>0.1038902029395104</left_val>
- <right_val>-0.1652563959360123</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 2 2 -1.</_>
- <_>
- 19 2 1 1 2.</_>
- <_>
- 18 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2754601240158081e-003</threshold>
- <left_val>0.2422588020563126</left_val>
- <right_val>-0.0759079232811928</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 3 0 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237578097730875</threshold>
- <left_val>-0.3831805884838104</left_val>
- <right_val>0.0401335097849369</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 2 2 -1.</_>
- <_>
- 19 2 1 1 2.</_>
- <_>
- 18 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113250697031617</threshold>
- <left_val>-0.0355255305767059</left_val>
- <right_val>0.2116439938545227</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 1 -1.</_>
- <_>
- 8 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0722206532955170</threshold>
- <left_val>-0.6267685294151306</left_val>
- <right_val>0.0221659094095230</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 2 2 -1.</_>
- <_>
- 19 2 1 1 2.</_>
- <_>
- 18 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0450176112353802</threshold>
- <left_val>-0.7715169787406921</left_val>
- <right_val>7.7348982449620962e-004</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 2 -1.</_>
- <_>
- 2 2 1 1 2.</_>
- <_>
- 3 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2360418960452080e-003</threshold>
- <left_val>0.2645697891712189</left_val>
- <right_val>-0.0533634796738625</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 1 2 -1.</_>
- <_>
- 20 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.5355370598845184e-004</threshold>
- <left_val>0.0403987504541874</left_val>
- <right_val>-0.1579526960849762</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 1 -1.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0462715588510036</threshold>
- <left_val>-0.4078798890113831</left_val>
- <right_val>0.0389214716851711</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 2 -1.</_>
- <_>
- 13 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112186595797539</threshold>
- <left_val>0.0743954926729202</left_val>
- <right_val>-0.1334968060255051</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 10 2 -1.</_>
- <_>
- 6 3 5 1 2.</_>
- <_>
- 11 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422749705612659</threshold>
- <left_val>0.0375597998499870</left_val>
- <right_val>-0.3565911948680878</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 2 2 -1.</_>
- <_>
- 11 3 1 1 2.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1554719470441341e-003</threshold>
- <left_val>0.0328388698399067</left_val>
- <right_val>-0.3969492018222809</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 8 3 -1.</_>
- <_>
- 6 2 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2889994978904724</threshold>
- <left_val>0.0218638405203819</left_val>
- <right_val>-0.5641658902168274</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 3 1 -1.</_>
- <_>
- 13 3 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198637600988150</threshold>
- <left_val>0.2233767956495285</left_val>
- <right_val>-0.0311224795877934</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 16 1 -1.</_>
- <_>
- 10 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201476793736219</threshold>
- <left_val>-0.1318303048610687</left_val>
- <right_val>0.1064788028597832</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 3 2 -1.</_>
- <_>
- 13 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210211295634508</threshold>
- <left_val>-0.0279414597898722</left_val>
- <right_val>0.1496804952621460</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 3 2 -1.</_>
- <_>
- 8 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0801073238253593e-003</threshold>
- <left_val>-0.0714284330606461</left_val>
- <right_val>0.2156967967748642</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 2 -1.</_>
- <_>
- 12 2 1 1 2.</_>
- <_>
- 11 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210751108825207</threshold>
- <left_val>-0.6355488896369934</left_val>
- <right_val>0.0148590896278620</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 2 -1.</_>
- <_>
- 9 2 1 1 2.</_>
- <_>
- 10 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6902920217253268e-004</threshold>
- <left_val>0.1086373031139374</left_val>
- <right_val>-0.1504798978567123</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 4 2 -1.</_>
- <_>
- 17 2 2 1 2.</_>
- <_>
- 15 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1716268858872354e-004</threshold>
- <left_val>0.0856569930911064</left_val>
- <right_val>-0.1238802000880241</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 8 5 -1.</_>
- <_>
- 8 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2543228864669800</threshold>
- <left_val>-0.0996628925204277</left_val>
- <right_val>0.1379338055849075</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 2 1 -1.</_>
- <_>
- 13 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0351566113531590</threshold>
- <left_val>0.0276070702821016</left_val>
- <right_val>-0.3085579872131348</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 2 -1.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1319420668296516e-004</threshold>
- <left_val>0.0933624133467674</left_val>
- <right_val>-0.1582736968994141</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 4 2 -1.</_>
- <_>
- 17 2 2 1 2.</_>
- <_>
- 15 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2236700169742107e-004</threshold>
- <left_val>-0.0268055405467749</left_val>
- <right_val>0.0416803695261478</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 4 2 -1.</_>
- <_>
- 3 2 2 1 2.</_>
- <_>
- 5 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2599179646931589e-004</threshold>
- <left_val>0.1031626984477043</left_val>
- <right_val>-0.1553778052330017</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 4 2 -1.</_>
- <_>
- 18 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131764104589820</threshold>
- <left_val>0.0482045710086823</left_val>
- <right_val>-0.1634005010128021</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 2 -1.</_>
- <_>
- 2 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366892404854298</threshold>
- <left_val>-0.5666003227233887</left_val>
- <right_val>0.0216245893388987</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 16 0 2 1 2.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254966802895069</threshold>
- <left_val>-0.0464780293405056</left_val>
- <right_val>0.1221868023276329</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 3 1 -1.</_>
- <_>
- 12 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0127627197653055</threshold>
- <left_val>-0.1167680993676186</left_val>
- <right_val>0.1235193982720375</right_val></_></_></trees>
- <stage_threshold>-1.4267690181732178</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 2 -1.</_>
- <_>
- 4 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126805501058698</threshold>
- <left_val>0.2194640040397644</left_val>
- <right_val>-0.3034295141696930</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 10 3 -1.</_>
- <_>
- 9 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2027722001075745</threshold>
- <left_val>-0.3529298901557922</left_val>
- <right_val>0.0818885788321495</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 2 -1.</_>
- <_>
- 3 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0420491583645344</threshold>
- <left_val>0.2480846047401428</left_val>
- <right_val>-0.1789755970239639</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 2 4 -1.</_>
- <_>
- 11 1 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373815894126892</threshold>
- <left_val>-0.1080716997385025</left_val>
- <right_val>0.1355669945478439</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 16 1 -1.</_>
- <_>
- 9 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0898792669177055</threshold>
- <left_val>-0.3144111037254334</left_val>
- <right_val>0.1164997965097427</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.2849619563203305e-004</threshold>
- <left_val>0.1204447969794273</left_val>
- <right_val>-0.1587626934051514</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 3 1 -1.</_>
- <_>
- 6 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197688303887844</threshold>
- <left_val>-0.1005569025874138</left_val>
- <right_val>0.3598122894763947</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 1 4 -1.</_>
- <_>
- 21 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6854061074554920e-003</threshold>
- <left_val>-0.2215726971626282</left_val>
- <right_val>0.0940313562750816</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 1 2 -1.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6115920627489686e-004</threshold>
- <left_val>0.0738363713026047</left_val>
- <right_val>-0.2855063080787659</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 2 -1.</_>
- <_>
- 12 3 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0531009398400784</threshold>
- <left_val>-0.0566674806177616</left_val>
- <right_val>0.2398404031991959</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 2 -1.</_>
- <_>
- 0 1 1 1 2.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0975299665005878e-004</threshold>
- <left_val>0.1155333966016769</left_val>
- <right_val>-0.2110487073659897</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 22 4 -1.</_>
- <_>
- 11 0 11 2 2.</_>
- <_>
- 0 2 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3080747127532959</threshold>
- <left_val>-0.4916175007820129</left_val>
- <right_val>0.0521330609917641</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 2 -1.</_>
- <_>
- 2 2 1 1 2.</_>
- <_>
- 3 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5257293432950974e-003</threshold>
- <left_val>-0.0939754992723465</left_val>
- <right_val>0.3000304996967316</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 14 2 -1.</_>
- <_>
- 11 2 7 1 2.</_>
- <_>
- 4 3 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479064993560314</threshold>
- <left_val>0.0510066412389278</left_val>
- <right_val>-0.4533003866672516</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 4 1 -1.</_>
- <_>
- 2 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1151742488145828e-003</threshold>
- <left_val>0.0535905212163925</left_val>
- <right_val>-0.3858076930046082</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 6 1 -1.</_>
- <_>
- 10 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115232598036528</threshold>
- <left_val>-0.2229443043470383</left_val>
- <right_val>0.0907559692859650</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 5 4 -1.</_>
- <_>
- 4 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0570370294153690</threshold>
- <left_val>0.1140248998999596</left_val>
- <right_val>-0.1793856024742127</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 3 -1.</_>
- <_>
- 16 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0963431894779205</threshold>
- <left_val>0.2599610984325409</left_val>
- <right_val>-0.0678420215845108</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 2 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0538529604673386</threshold>
- <left_val>-0.0825551375746727</left_val>
- <right_val>0.3720957040786743</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 12 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2167631434276700e-004</threshold>
- <left_val>-0.3507750034332275</left_val>
- <right_val>0.0821119621396065</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 2 -1.</_>
- <_>
- 0 3 11 1 2.</_>
- <_>
- 11 4 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0564907491207123</threshold>
- <left_val>-0.3229841887950897</left_val>
- <right_val>0.0538763888180256</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7906559989787638e-004</threshold>
- <left_val>0.1558347046375275</left_val>
- <right_val>-0.2573314905166626</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 1 -1.</_>
- <_>
- 2 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0382157601416111</threshold>
- <left_val>-0.4869484007358551</left_val>
- <right_val>0.0375617593526840</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 1 3 -1.</_>
- <_>
- 18 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6500251889228821e-003</threshold>
- <left_val>-0.0622060298919678</left_val>
- <right_val>0.2777954936027527</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 6 3 -1.</_>
- <_>
- 3 2 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223919898271561</threshold>
- <left_val>0.0567261911928654</left_val>
- <right_val>-0.3096722066402435</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 1 3 -1.</_>
- <_>
- 18 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288605708628893</threshold>
- <left_val>0.2171639055013657</left_val>
- <right_val>-0.0595195591449738</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 3 -1.</_>
- <_>
- 3 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9423289969563484e-003</threshold>
- <left_val>-0.0510598309338093</left_val>
- <right_val>0.4046814143657684</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 1 2 -1.</_>
- <_>
- 21 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140064498409629</threshold>
- <left_val>0.0495527796447277</left_val>
- <right_val>-0.1997963041067123</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 1 2 -1.</_>
- <_>
- 0 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7382301050238311e-004</threshold>
- <left_val>-0.3052073121070862</left_val>
- <right_val>0.0695639625191689</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151743097230792</threshold>
- <left_val>-0.3825840950012207</left_val>
- <right_val>0.0219741594046354</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 1 -1.</_>
- <_>
- 5 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9322619482409209e-004</threshold>
- <left_val>0.1185929030179977</left_val>
- <right_val>-0.1750292032957077</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 12 3 -1.</_>
- <_>
- 12 1 4 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5898758172988892</threshold>
- <left_val>-0.6428133249282837</left_val>
- <right_val>0.0170734506100416</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5915939477272332e-004</threshold>
- <left_val>-0.2325448989868164</left_val>
- <right_val>0.0648522824048996</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 8 4 -1.</_>
- <_>
- 10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5708745121955872</threshold>
- <left_val>7.8144967555999756e-003</left_val>
- <right_val>-0.6534169912338257</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 4 -1.</_>
- <_>
- 11 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0880111008882523</threshold>
- <left_val>-0.0650307089090347</left_val>
- <right_val>0.2522613108158112</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 12 3 -1.</_>
- <_>
- 12 1 4 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115374401211739</threshold>
- <left_val>0.0258980691432953</left_val>
- <right_val>-0.0485799610614777</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 3 -1.</_>
- <_>
- 6 1 4 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4653395116329193</threshold>
- <left_val>-0.4928914904594421</left_val>
- <right_val>0.0366029702126980</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 8 4 -1.</_>
- <_>
- 10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6187191009521484</threshold>
- <left_val>-2.2136380430310965e-003</left_val>
- <right_val>-0.7480828166007996</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 4 -1.</_>
- <_>
- 8 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5378053188323975</threshold>
- <left_val>0.0291653908789158</left_val>
- <right_val>-0.5173789858818054</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 6 4 -1.</_>
- <_>
- 12 1 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2519442141056061</threshold>
- <left_val>-0.0285676196217537</left_val>
- <right_val>0.4221490025520325</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 3 -1.</_>
- <_>
- 10 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0274908300489187</threshold>
- <left_val>-0.1249886006116867</left_val>
- <right_val>0.1562238931655884</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 6 4 -1.</_>
- <_>
- 12 1 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1806313991546631</threshold>
- <left_val>-0.0163250491023064</left_val>
- <right_val>0.1323429048061371</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 4 -1.</_>
- <_>
- 8 1 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1738668978214264</threshold>
- <left_val>-0.0489186011254787</left_val>
- <right_val>0.4147368073463440</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 10 2 -1.</_>
- <_>
- 11 2 5 1 2.</_>
- <_>
- 6 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499421507120132</threshold>
- <left_val>-0.4714230895042419</left_val>
- <right_val>0.0378924496471882</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 15 3 -1.</_>
- <_>
- 7 2 5 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.8202174901962280</threshold>
- <left_val>0.0239661596715450</left_val>
- <right_val>-0.5435004234313965</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 1 -1.</_>
- <_>
- 14 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5848631048575044e-004</threshold>
- <left_val>-0.1057196035981178</left_val>
- <right_val>0.0487360209226608</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0050835385918617e-003</threshold>
- <left_val>0.1960175931453705</left_val>
- <right_val>-0.0707343071699142</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 15 1 -1.</_>
- <_>
- 9 2 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3124977946281433</threshold>
- <left_val>-0.0346124917268753</left_val>
- <right_val>0.2072722017765045</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 1 -1.</_>
- <_>
- 5 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165950097143650</threshold>
- <left_val>-0.0553347915410995</left_val>
- <right_val>0.3236283063888550</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 1 -1.</_>
- <_>
- 14 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6122892312705517e-003</threshold>
- <left_val>0.0648118481040001</left_val>
- <right_val>-0.1037767007946968</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 9 2 -1.</_>
- <_>
- 3 1 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0555340386927128</threshold>
- <left_val>0.0910528078675270</left_val>
- <right_val>-0.1942782998085022</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 1 2 -1.</_>
- <_>
- 21 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2657270096242428e-003</threshold>
- <left_val>-0.3721610009670258</left_val>
- <right_val>0.0351289287209511</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 1 2 -1.</_>
- <_>
- 0 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1315821260213852e-003</threshold>
- <left_val>-0.4001424014568329</left_val>
- <right_val>0.0363785400986671</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 22 1 -1.</_>
- <_>
- 0 3 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1546691060066223</threshold>
- <left_val>0.2241909950971603</left_val>
- <right_val>-0.0645142272114754</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 16 2 -1.</_>
- <_>
- 4 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0567202009260654</threshold>
- <left_val>-0.2784695923328400</left_val>
- <right_val>0.0651087835431099</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 1 -1.</_>
- <_>
- 16 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117585696280003</threshold>
- <left_val>0.1950017958879471</left_val>
- <right_val>-0.0803164392709732</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2118507921695709e-003</threshold>
- <left_val>0.0487297289073467</left_val>
- <right_val>-0.2942777872085571</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 6 2 -1.</_>
- <_>
- 17 0 3 1 2.</_>
- <_>
- 14 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311635509133339</threshold>
- <left_val>-0.0396496094763279</left_val>
- <right_val>0.1087224036455154</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 6 2 -1.</_>
- <_>
- 2 0 3 1 2.</_>
- <_>
- 5 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187317896634340</threshold>
- <left_val>0.2549884915351868</left_val>
- <right_val>-0.0570606589317322</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 2 -1.</_>
- <_>
- 12 3 1 1 2.</_>
- <_>
- 11 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9629219605121762e-004</threshold>
- <left_val>0.0609826892614365</left_val>
- <right_val>-0.1056500002741814</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 0 1 1 2.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112534696236253</threshold>
- <left_val>0.2410207986831665</left_val>
- <right_val>-0.0549335293471813</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 4 2 -1.</_>
- <_>
- 18 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184186305850744</threshold>
- <left_val>-0.2154302000999451</left_val>
- <right_val>0.0418593809008598</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 2 -1.</_>
- <_>
- 2 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0269794706255198</threshold>
- <left_val>-0.4404479861259460</left_val>
- <right_val>0.0282598100602627</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 2 -1.</_>
- <_>
- 17 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1812430825084448e-004</threshold>
- <left_val>0.1126312986016274</left_val>
- <right_val>-0.1561287045478821</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 2 -1.</_>
- <_>
- 4 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142690502107143</threshold>
- <left_val>-0.2204768061637878</left_val>
- <right_val>0.0639629736542702</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 2 4 -1.</_>
- <_>
- 13 1 1 2 2.</_>
- <_>
- 12 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0410973504185677</threshold>
- <left_val>-0.0144041404128075</left_val>
- <right_val>0.4511365890502930</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 4 -1.</_>
- <_>
- 8 1 1 2 2.</_>
- <_>
- 9 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0341849811375141</threshold>
- <left_val>-0.0239439606666565</left_val>
- <right_val>0.5334662199020386</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0550987198948860</threshold>
- <left_val>-0.4417823851108551</left_val>
- <right_val>0.0144759602844715</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 2 -1.</_>
- <_>
- 10 0 1 1 2.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154654402285814</threshold>
- <left_val>0.0182211305946112</left_val>
- <right_val>-0.6235563755035400</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 2 -1.</_>
- <_>
- 16 1 1 1 2.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3496570326387882e-003</threshold>
- <left_val>-0.1382047981023789</left_val>
- <right_val>0.2178387939929962</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 8 2 -1.</_>
- <_>
- 7 1 4 1 2.</_>
- <_>
- 11 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0499045215547085</threshold>
- <left_val>0.0274669490754604</left_val>
- <right_val>-0.5273222923278809</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 9 3 -1.</_>
- <_>
- 12 3 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5729550123214722</threshold>
- <left_val>-0.8296223282814026</left_val>
- <right_val>5.5375328520312905e-004</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 9 3 -1.</_>
- <_>
- 7 3 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0248066000640392</threshold>
- <left_val>0.1025058031082153</left_val>
- <right_val>-0.1492258012294769</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 2 2 -1.</_>
- <_>
- 20 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6801443248987198e-003</threshold>
- <left_val>-0.0758099332451820</left_val>
- <right_val>0.2366416007280350</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 2 -1.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0426608510315418</threshold>
- <left_val>-0.4847196936607361</left_val>
- <right_val>0.0303105395287275</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 8 3 -1.</_>
- <_>
- 7 2 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2783867120742798</threshold>
- <left_val>-0.0308529809117317</left_val>
- <right_val>0.4881013929843903</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 1 -1.</_>
- <_>
- 5 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108723295852542</threshold>
- <left_val>-0.2787505090236664</left_val>
- <right_val>0.0469719097018242</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 3 1 -1.</_>
- <_>
- 14 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8905799263156950e-004</threshold>
- <left_val>-0.0977130830287933</left_val>
- <right_val>0.1045359000563622</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3399498835206032e-003</threshold>
- <left_val>-0.0567897297441959</left_val>
- <right_val>0.2199099957942963</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 2 2 -1.</_>
- <_>
- 20 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5025609433650970e-003</threshold>
- <left_val>0.1681939065456390</left_val>
- <right_val>-0.0471827611327171</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 2 2 -1.</_>
- <_>
- 1 1 1 1 2.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1141611337661743e-003</threshold>
- <left_val>-0.0538599304854870</left_val>
- <right_val>0.2494518011808395</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 1 4 -1.</_>
- <_>
- 21 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0334822796285152</threshold>
- <left_val>0.0396987795829773</left_val>
- <right_val>-0.1784003973007202</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168455094099045</threshold>
- <left_val>-0.2692301869392395</left_val>
- <right_val>0.0555524602532387</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3367617763578892e-003</threshold>
- <left_val>0.0457564890384674</left_val>
- <right_val>-0.2253731936216354</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 2 -1.</_>
- <_>
- 6 0 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1215948015451431</threshold>
- <left_val>0.6139575839042664</left_val>
- <right_val>-0.0229580700397491</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186872798949480</threshold>
- <left_val>-0.3642201125621796</left_val>
- <right_val>0.0236557908356190</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 16 2 -1.</_>
- <_>
- 11 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2913098037242889</threshold>
- <left_val>-0.6291968226432800</left_val>
- <right_val>0.0176620502024889</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 3 1 -1.</_>
- <_>
- 14 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0170090030878782e-004</threshold>
- <left_val>0.0790203064680099</left_val>
- <right_val>-0.0738237276673317</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 3 1 -1.</_>
- <_>
- 7 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3048979346640408e-004</threshold>
- <left_val>-0.1133956015110016</left_val>
- <right_val>0.1254207938909531</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 1 -1.</_>
- <_>
- 11 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0317746400833130</threshold>
- <left_val>0.0240910202264786</left_val>
- <right_val>-0.2394727021455765</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 3 -1.</_>
- <_>
- 11 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0676887184381485</threshold>
- <left_val>0.2068980932235718</left_val>
- <right_val>-0.0623617693781853</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0397858098149300</threshold>
- <left_val>0.0135105196386576</left_val>
- <right_val>-0.6386339068412781</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0200208593159914</threshold>
- <left_val>-0.1968978047370911</left_val>
- <right_val>0.0677288100123405</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 2 2 -1.</_>
- <_>
- 12 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0945090875029564</threshold>
- <left_val>0.0180175509303808</left_val>
- <right_val>-0.6440523862838745</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 2 -1.</_>
- <_>
- 9 3 1 1 2.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2699890695512295e-003</threshold>
- <left_val>0.0314390510320663</left_val>
- <right_val>-0.3640947937965393</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 16 1 -1.</_>
- <_>
- 4 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1304758042097092</threshold>
- <left_val>-0.5485221147537231</left_val>
- <right_val>5.9488588012754917e-003</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 1 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7846038574352860e-004</threshold>
- <left_val>0.0861910805106163</left_val>
- <right_val>-0.1290287971496582</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 8 5 -1.</_>
- <_>
- 14 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2183739989995956</threshold>
- <left_val>0.1289092004299164</left_val>
- <right_val>-0.0562122501432896</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 5 -1.</_>
- <_>
- 4 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1850591003894806</threshold>
- <left_val>-0.0471936501562595</left_val>
- <right_val>0.2954468131065369</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 2 -1.</_>
- <_>
- 16 1 1 1 2.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166506506502628</threshold>
- <left_val>-0.0225153602659702</left_val>
- <right_val>0.1783117949962616</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 2 -1.</_>
- <_>
- 7 1 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3978849640116096e-004</threshold>
- <left_val>0.0790100768208504</left_val>
- <right_val>-0.1559263020753861</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 16 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0583770088851452</threshold>
- <left_val>-0.0246948692947626</left_val>
- <right_val>0.3055580854415894</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 3 -1.</_>
- <_>
- 5 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0584596507251263</threshold>
- <left_val>0.1479811966419220</left_val>
- <right_val>-0.0893782526254654</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 3 -1.</_>
- <_>
- 16 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185263492166996</threshold>
- <left_val>0.0921296998858452</left_val>
- <right_val>-0.0897432565689087</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 1 -1.</_>
- <_>
- 11 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0854168683290482</threshold>
- <left_val>-0.0263978093862534</left_val>
- <right_val>0.4890831112861633</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 12 2 -1.</_>
- <_>
- 13 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1266379952430725</threshold>
- <left_val>0.0472919195890427</left_val>
- <right_val>-0.0673991292715073</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 22 3 -1.</_>
- <_>
- 11 2 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1949647068977356</threshold>
- <left_val>0.2069161981344223</left_val>
- <right_val>-0.0614933893084526</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 2 1 -1.</_>
- <_>
- 15 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120370900258422</threshold>
- <left_val>0.0294632297009230</left_val>
- <right_val>-0.6021323800086975</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 3 -1.</_>
- <_>
- 1 0 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7944779139943421e-004</threshold>
- <left_val>0.0810977965593338</left_val>
- <right_val>-0.1374575942754746</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 6 2 -1.</_>
- <_>
- 17 1 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7354073077440262e-003</threshold>
- <left_val>0.0417893193662167</left_val>
- <right_val>-0.1630245000123978</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 5 -1.</_>
- <_>
- 10 0 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0743067711591721</threshold>
- <left_val>-0.1493885070085526</left_val>
- <right_val>0.0783251002430916</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 4 1 -1.</_>
- <_>
- 12 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144710596650839</threshold>
- <left_val>-0.0261145904660225</left_val>
- <right_val>0.1420436054468155</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 1 -1.</_>
- <_>
- 8 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118553396314383</threshold>
- <left_val>-0.0516728907823563</left_val>
- <right_val>0.2699764072895050</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 3 -1.</_>
- <_>
- 16 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213465392589569</threshold>
- <left_val>-0.0338661484420300</left_val>
- <right_val>0.2302772998809815</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 3 -1.</_>
- <_>
- 4 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0490451715886593</threshold>
- <left_val>0.2696835994720459</left_val>
- <right_val>-0.0548960007727146</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0358397103846073</threshold>
- <left_val>-0.2992103099822998</left_val>
- <right_val>0.0226319395005703</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 6 1 -1.</_>
- <_>
- 3 2 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8866980574093759e-004</threshold>
- <left_val>0.0606743693351746</left_val>
- <right_val>-0.2074286043643951</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 2 -1.</_>
- <_>
- 11 0 4 1 2.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311627201735973</threshold>
- <left_val>-0.2476159930229187</left_val>
- <right_val>0.0501967892050743</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 1 -1.</_>
- <_>
- 10 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8370518703013659e-004</threshold>
- <left_val>-0.1959448009729385</left_val>
- <right_val>0.0566197708249092</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 2 -1.</_>
- <_>
- 12 0 1 1 2.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0496213212609291</threshold>
- <left_val>0.8667588233947754</left_val>
- <right_val>-3.4514570143073797e-003</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 1 2.</_>
- <_>
- 10 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5349689531140029e-004</threshold>
- <left_val>-0.1387840062379837</left_val>
- <right_val>0.0827796980738640</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 3 3 -1.</_>
- <_>
- 11 1 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0579679794609547</threshold>
- <left_val>-0.0396481305360794</left_val>
- <right_val>0.1881846934556961</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 5 2 -1.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0185546502470970</threshold>
- <left_val>-0.1919265985488892</left_val>
- <right_val>0.0630793720483780</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 1 -1.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0196151006966829</threshold>
- <left_val>0.0190081596374512</left_val>
- <right_val>-0.1907673031091690</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0334483496844769</threshold>
- <left_val>-0.2958706915378571</left_val>
- <right_val>0.0443617105484009</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5647640042006969e-003</threshold>
- <left_val>0.2529521882534027</left_val>
- <right_val>-0.1090489998459816</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 4 -1.</_>
- <_>
- 10 1 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180390607565641</threshold>
- <left_val>0.2877208888530731</left_val>
- <right_val>-0.0384894199669361</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9565680122468621e-004</threshold>
- <left_val>0.0949289873242378</left_val>
- <right_val>-0.1012921035289764</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 1 -1.</_>
- <_>
- 5 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203926190733910</threshold>
- <left_val>-0.8009325861930847</left_val>
- <right_val>0.0130648696795106</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 12 2 -1.</_>
- <_>
- 14 0 6 1 2.</_>
- <_>
- 8 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0903669223189354</threshold>
- <left_val>0.3940427005290985</left_val>
- <right_val>-0.0190852805972099</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 3 -1.</_>
- <_>
- 8 1 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1523697972297669</threshold>
- <left_val>-0.6418926715850830</left_val>
- <right_val>0.0175207499414682</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 1 2 -1.</_>
- <_>
- 13 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0771427676081657</threshold>
- <left_val>0.3086620867252350</left_val>
- <right_val>-0.0145021099597216</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 1 -1.</_>
- <_>
- 4 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8981278240680695e-003</threshold>
- <left_val>-0.3348196148872376</left_val>
- <right_val>0.0308049898594618</right_val></_></_></trees>
- <stage_threshold>-1.4611779451370239</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_></stages></parojos>
- </opencv_storage>
|